首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Antisense RNAs have been used for gene interference experiments in many cell types and organisms. However, relatively few experiments have been conducted with antisense genes integrated into the germ line. In Drosophila reduced ribosomal protein (r-protein) gene function has been hypothesized to result in a Minute phenotype. In this report we examine the effects of antisense r-protein 49 expression, a gene known to correspond to a Minute mutation An antisense rp49 gene driven by a strong and inducible promoter was transformed into the Drosophila germ line. Induction of this gene led to the development of flies with weak Minute phenotypes and to the transient arrest of oogenesis. Parameters that may affect the success of antisense gene inactivation are discussed.  相似文献   

2.
Summary Minute loci represent a class of about 50 different Drosophila genes that appear to be functionally related. These genes may code for components of the protein synthetic apparatus. While one Minute locus has been recently shown to code for a ribosomal protein, it is not yet known whether any of the other Minute loci also code for ribosomal proteins. We have addressed this question by a combined molecular and genetic approach. In this report, a cloned DNA encoding the ribosomal protein rp21 is partially characterized. The rp21 gene maps to the same region (region 80 of chromosome 3L) as the temperature-sensitive Minute QIII gene. Using P-element mediated transformation, the rp21 gene was transformed into the germline of Drosophila. RNA blot experiments revealed that the transformed gene is expressed in transgenic flies. However, genetic complementation analysis indicated that the QIII locus and the rp21 gene are not identical. Implications of these findings for the relationship between Minutes and ribosomal protein genes are discussed.  相似文献   

3.
In several metazoans including flies of the genus Drosophila, germ line specification occurs through the inheritance of maternally deposited cytoplasmic determinants, collectively called germ plasm. The novel insect gene oskar is at the top of the Drosophila germ line specification pathway, and also plays an important role in posterior patterning. A novel N-terminal domain of oskar (the Long Oskar domain) evolved in Drosophilids, but the role of this domain in oskar functional evolution is unknown. Trans-species transgenesis experiments have shown that oskar orthologs from different Drosophila species have functionally diverged, but the underlying selective pressures and molecular changes have not been investigated. As a first step toward understanding how Oskar function could have evolved, we applied molecular evolution analysis to oskar sequences from the completely sequenced genomes of 16 Drosophila species from the Sophophora subgenus, Drosophila virilis and Drosophila immigrans. We show that overall, this gene is subject to purifying selection, but that individual predicted structural and functional domains are subject to heterogeneous selection pressures. Specifically, two domains, the Drosophila-specific Long Osk domain and the region that interacts with the germ plasm protein Lasp, are evolving at a faster rate than other regions of oskar. Further, we provide evidence that positive selection may have acted on specific sites within these two domains on the D. virilis branch. Our domain-based analysis suggests that changes in the Long Osk and Lasp-binding domains are strong candidates for the molecular basis of functional divergence between the Oskar proteins of D. melanogaster and D. virilis. This molecular evolutionary analysis thus represents an important step towards understanding the role of an evolutionarily and developmentally critical gene in germ plasm evolution and assembly.  相似文献   

4.
A rabbit antiserum, specific for the histone H3.3 replacement variant, was raised with the aid of a histone H3.3-specific peptide. Immuno blot experiments demonstrated the specificity of this polyclonal antiserum. In addition, we showed on immuno blots that two monoclonal antibodies isolated from mice with systemic lupus erythematosus (SLE) display strong reactivity with the H3.3 histone, but not with its replication-dependent counterparts. Our observations indicate that histone H3.3 might play a role as autoantigen in SLE. We used the histone H3.3-specific antiserum to characterize the germ line chromatin in cytological preparations of Drosophila testes, because our previous studies had shown that a histone H3.3-encoding gene is strongly expressed in the germ line of Drosophila males. The antiserum reacted with some of the lampbrush loops in spermatocytes and with chromatin of the postmeiotic germ cells of males. Our data indicate that histone H3.3 is not evenly distributed throughout the chromatin of germ cells, but is concentrated in distinct regions. Histone H3.3 disappears from the spermatid nuclei, along with the other core histones, during the late stages of spermatogenesis. In Drosophila polytene chromosomes, however, a rather uniform distribution of the histone H3.3 was observed. The possible role of histone H3.3 is discussed. Received: 12 May 1997 / Accepted: 4 July 1997  相似文献   

5.
6.
Summary The trmD operon of Escherichia coli consists of the genes for the ribosomal protein (r-protein) S16, a 21 kDa protein (21K) of unknown function, the tRNA(m1G37)methyltransferase (TrmD), and r-protein L19, in this order. Previously we have shown that the steady-state amount of the two r-proteins exceeds that of the 21K and TrmD proteins 12- and 40-fold, respectively, and that this differential expression is solely explained by translational regulation. Here we have constructed translational gene fusions of the trmD operon and lacZ. The expression of a lacZ fusion containing the first 18 codons of the 21K protein gene is 15-fold higher than the expression of fusions containing 49 or 72 codons of the gene. This suggests that sequences between the 18th and the 49th codon may act as a negative element controlling the expression of the 21K protein gene. Evidence is presented which demonstrates that this regulation is achieved by reducing the efficiency of translation.  相似文献   

7.
Summary Five regions of the compound eye have been found to be preferential boundaries for clones of labelledMinute + cells, and to act restrictively on the growth of cell clones after a given developmental stage. One of these regions is topographically related to the line of pattern inversion existing at the level of the equator. The results of experiments showing independency of origin of restriction lines and line of pattern inversion are reported.  相似文献   

8.
While it has long been possible to study the process of recombination in yeast and other single-celled organisms, it has been difficult to distinguish between pathways of meiotic and mitotic recombination in multicellular eukaryotes. The experimental system described here bridges the historically separated fields of Genetic Recombination and DNA Repair in Drosophila. It is now feasible to study the repair of unique double-strand breaks induced in the Drosophila genome by the excision of a P-transposable element or by cleavage at an introduced endonuclease recognition sequence. This repair can be studied in both somatic cells and mitotically dividing germ cells. The repair of these breaks occurs mainly by copying sequence from a template located anywhere in the karyoplasm, and occurs in both male and female flies. This system, which was the first of its kind in metazoan organisms, is now being used for gene targeting in Drosophila. This review summarizes results that provide new insights into the process of gap repair in Drosophila and outline some recent experiments that demonstrate the power of the gene targeting technique. BioEssays 20: 317-327, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

9.
In the wing disks of Drosophila slowly dividing cells of Minute mutations are progressively eliminated from Minute/Minute+ mosaic compartments by a process known as cell competition. From a study of two different Minutes we show here that the intensity of competition is greater in the more extreme Minute with the slowest rate of cell division. The way in which the more rapidly growing Minute+ clones grow and overcome the surrounding Minute cells is described and cell competition is shown to be a result of local interactions between slow- and faster-growing cells.  相似文献   

10.
11.
During oogenesis in Drosophila, germ cells appear in sequential clusters of 16 interconnected cells. The events surrounding the differentiation of these cells are not fully understood. Here we present genetic and morphological analysis of mutations in the gene stand still (stil). Through complementation analyses we have refined the location of this gene to cyological region 49B-C. Our analyses of ovaries from ethylmethane sulfonate (EMS) - induced mutant alleles of this gene suggest that mutations in the stil gene produce a wide range of phenotypic abnormalities, from the absence of germ cells in the most severe alleles, to egg chambers with cytoskeletal defects in the less severe alleles. Our results suggest a role for this gene in specifying or maintaining a cytoskeletal component, with consequences during oogenesis and possibly during germ line sex determination. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
In the long germ insect Drosophila, the gene tailless acts to pattern the terminal regions of the embryo. Loss of function of this gene results in the deletion of the anterior and posterior terminal structures and the eighth abdominal segment. Drosophila tailless is activated by the maternal terminal system through Torso signaling at both poles of the embryo, with additional activation by Bicoid at the anterior. Here, we describe the expression and function of tailless in a long germ Hymenoptera, the wasp Nasonia vitripennis. Despite the morphological similarities in the mode of development of these two insects, we find major differences in the regulation and function of tailless between Nasonia and Drosophila. In contrast to the fly, Nasonia tll appears to rely on otd for its activation at both poles. In addition, the anterior domain of Nasonia tll appears to have little or no segmental patterning function, while the posterior tll domain has a much more extensive patterning role than its Drosophila counterpart.  相似文献   

14.
Summary Two genetic operations have been combined in order to ascertain whether there are differential proliferation rates in the syncytial nuclei and the blastoderm cells prior to the formation of the imaginal disc anlagen. Early chromosome loss caused by the mutantca nd has been associated with the generation ofMinute (M/M +) genotypes in normal (M +/M +) zygotes or of non-Minute genotypes inMinute zygotes. The results indicate that there is no growth competition betweenMinute and non-Minute cells prior to the formation of the imaginal discs. Growth competition, however, leads later, during the proliferation phase of the discs, to the demarcation of compartment boundaries within imaginal discs.  相似文献   

15.
《Gene》1998,212(1):119-125
A cDNA clone that encodes a Drosophila homologue of ribosomal protein L3 was isolated from a Drosophila ovary gridded cDNA library. The Drosophila ribosomal protein L3 gene (RpL3) is highly conserved with ribosomal protein L3 genes in other organisms. It is a single copy gene and maps to position 86D5–10 on polytene chromosomes. A Minute gene in this region, M(3)86D, is a possible candidate to encode RPL3. RPL3 message is expressed ubiquitously. A partial RPL8 cDNA clone was also isolated and mapped to 62F.  相似文献   

16.
We have used pole cell transplantations to construct germ-line mosaics for maroon-like (mal), a maternal effect mutation in Drosophila. Such mosaics allow one to determine the cell type in which a gene is active. We find that the maroon-like maternal effect is (1) autonomous to the germ line and (2) dose sensitive in germ-line mosaics. Aldehyde oxidase activity is used as a histological probe to investigate the tissue and temporal distribution of mal+ activity in the developing ovary. The adult ovary shows mal+ activity in the germ line at all discernible stages of oogenesis but no activity is observed in the mesodermally derived follicle cells. Differential mal+ activity is observed even in the ovary of the third-instar larvae.  相似文献   

17.
To identify key molecules that regulate germ cell proliferation and differentiation, we have attempted to isolate protein kinase genes preferentially expressed in germ line cells. One such cDNA cloned from murine embryonic germ(EG) cells encodes a nonreceptor type serine/threonine kinase and is predominantly expressed in the testis, ovary, and spleen of adult mouse. The nucleotide sequence of the entire coding region shows that this clone, designated Plk1(polo like kinase 1), is identical with STPK13 previously cloned from murine erythroleukemia cells. The protein encoded by Plk1 is closely related to the product of Drosophila polo that plays a role in mitosis and meiosis. To define the role of Plk1 in germ cell development, we have examined its expression in murine gonads by in situ hybridization. Here we show that the PlK1 gene is specifically expressed in spermatocytes of diplotene and diakinesis stage, in secondary spermatocytes, and in round spermatids in testes. It is also expressed in growing oocytes and ovulated eggs. The pattern of expression of the Plk1 gene suggests that the gene product is involved in completion of meiotic division, and like the Drosophila polo protein, is a maternal factor active in embryos at the early cleavage stage. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The Drosophila Trithorax‐like (Trl) gene encodes a GAGA factor which regulates a number of developmentally important genes. In this study, we identify a new function for Drosophila GAGA factor in male germ cell development. Trl mutants carrying strong hypomorphic alleles display loss of primordial germ cells during their migration in embryogenesis and severe disruption in mitochondria structure during early spermatogenesis. The mutation resulted in small testes formation, a deficit of germ cells, abnormal mitochondrial morphogenesis, spermatocyte death through autophagy, and partial or complete male sterility. Pleiotropic mutation effects can be explained by the misexpression of GAGA factor target genes, the products of which are required for germ cell progression into mature sperm. genesis 52:738–751, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
We have cloned and sequenced the single Tribolium homolog of the Drosophila engrailed gene. The predicted protein contains a homeobox and several domains conserved among all engrailed genes identified to date. In addition it contains several features specific to the invected homologs of Bombyx and Drosophila, indicating that these features most likely were present in the ancestral gene in the common ancestor of holometabolous insects. We used the cross-reacting monoclonal antibody, 4D9, to follow the expression of the Engrailed protein during segmentation in Tribolium embryos. As in other insects, Engrailed accumulates in the nuclei of cells along the posterior margin of each segment. The first Engrailed stripe appears as the embryonic rudiment condenses. Then as the rudiment elongates into a germ band, Engrailed stripes appear in an anterior to posterior progression, just prior to morphological evidence of the formation of each segment. As in Drosophila (a long germ insect), expression of engrailed in Tribolium (classified as a short germ insect) is preceeded by the expression of several homologous segmentation genes, suggesting that similar genetic regulatory mechanisms are shared by diverse developmental types. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The processes of learning and memory have traditionally been studied in large experimental organisms (Aplysia, mice, rats and humans), where well-characterized behaviors are easily tested. Although Drosophila is one of the most experimentally tractable organisms, it has only recently joined the others as a model organism for learning and memory. Drosophila behavior has been studied for over 20 years; however, most of the work in the learning and memory field has focused on initial learning, because establishing memory in Drosophila has not been as straightforward as in other organisms. A major recent advance in this field has been the development of a training protocol that induces long-term memory in flies. This made possible experiments that implicated the Drosophila CREB gene as a critical component in the consolidation of long-term memory, and paves the way for future experiments utilizing the well developed tools in Drosophila. This review will briefly summarize what is known in the field of Drosophila learning and memory to date, and discuss why the unique aspects of this field make traditional approaches difficult and reward the use of alternative paths of experimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号