首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Insect Biochemistry》1990,20(6):593-604
Juvenile hormone (JH) esterase activity was found in the plasma of larvae, pupae and adults of wild-type tobacco hornworms, Manduca sexta. There was a single peak of plasma JH esterase activity approx. 28 h prior to ecdysis in each instar from the second through the fourth instar and a peak of activity prior to both wandering and pupation in the fifth (last) instar. JH esterase activity was high in newly formed male and female pupae but declined to minimal levels by day 1 of the pupal stage. For the remainder of the pupal period, activity was at background levels. JH esterase activity increased again in newly emerged, virgin male and female adults but declined and remained at a low level 1 day after emergence through death. Gel filtration analysis of larval, pupal and adult plasma resolved a single peak of JH esterase activity with an apparent molecular weight of 66,000. However, isoelectric focusing revealed three forms with isoelectric points of 5.5, 5.8 and 6.1. These isoelectric forms were also found in black and white mutants of last instar M. sexta and in purified JH esterase from wild-type larvae. The plasma JH esterase activity metabolized JH I 2–3 times faster than JH III and was sensitive to inhibition by octylthio-1,1,1-trifluoro-2-propanone and insensitive to O,O-diisopropyl phosphorofluoridate. Gel filtration, isoelectric focusing, substrate specificity and developmental studies suggest that the same JH esterases are found in the plasma of larvae, pupae and adults and appear to be different from general (α-NA) esterase.  相似文献   

2.
Disc electrophoresis was used to examine and characterize the esterases present in the fat body, haemolymph, and midgut of last stage larvae of the southwestern corn borer, Diatraea grandiosella. Significant temporal changes were observed in the pattern of the 4 major esterases of the fat body and 3 major esterases of the haemolymph. These changing profiles presumably relate, in part, to a requirement for the degradation of juvenile hormone (JH) in preparation for metamorphosis.The binding capacity of esterases present in the larval midgut towards JH I and three JH mimics (alkyl-3,7,11-trimethyl-2,4-dodecadienoates) was also examined. The midgut of last stage nondiapausing larvae was shown to contain a carboxylesterase which bound all three JH mimics. Another esterase which bound JH I, but not the mimics, was also present. An esterase with a similar electrophoretic mobility was detected in the haemolymph and integument. Since the JH I binding esterase did not bind the JH mimics, the mimics do not appear to synergize JH by inhibiting its ester hydrolysis.  相似文献   

3.
《Insect Biochemistry》1988,18(1):53-61
Juvenile hormone (JH) esterase was characterized from the plasma of adult females of the cabbage looper, Trichoplusia ni, and compared with that present in 4th and 5th instar larvae. Ester hydrolysis was the principal route of JH metabolism. Gel filtration of plasma resolved a single peak of JH esterase which was distinct from that of the α-naphthyl acetate (α-NA) esterase activity. The JH esterase apparent molecular weight was 62,000 in prepupae and virgin, female adults and 69,000 in 2-day-old 4th instar larvae. Broad range isoelectric focusing of plasma of prepupae and adults resolved a major peak of activity at pH 5.5 with a minor peak of activity at pH 6.1 and in 4th instar larvae at pH 5.45 and 5.8, respectively. By this method JH esterase was resolved from the α-NA esterase activity. The plasma of prepupae and adults metabolized JH I at about twice the rate of JH III. JH esterase activity from adult plasma was more stable than the α-NA esterase activity. Adult JH esterase activity was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate in contrast to that of the α-NA esterase activity. Mated females oviposited 8 times more eggs than virgin females to 10 days after emergence. The total haemolymph protein content of virgin females remained high throughout the period of study whereas mated females showed a significant decline beginning on day 4. JH esterase activity remained unchanged in virgins whereas it declined drastically in mated females. The α-NA esterase activity declined to low levels shortly after emergence in both groups. JH and α-NA esterase activity was not affected by the application of the juvenoid, (RS)-methoprene. The present study provides evidence of a functional role for JH esterase in JH metabolism and reproduction in adult T. ni. JH esterases in the adult were identical to that of prepupae by the methods described above.  相似文献   

4.
SYNOPSIS. Lepidopteran juvenile hormone (JH) esterase appearsto have a functional role in the regulation of embryogenesis,larval growth and development, and adult reproduction. In preovipositionaland newly laid eggs of the tobacco hornworm, Manduca sexta,JH esterase activity was elevated presumably to metabolize maternalJHs, and then declined after blastoderm formation. Also, a singlepeak in hemolymph JH esterase activity was found prior to ecdysisin the second through the fourth instar of M. sexta, the functionof which is unclear. However, in the last instar, elevated hemolymphJH esterase activity was noted prior to wandering and againprior to ecdysis to scavenge the last traces of JH necessaryfor normal development. The hemolymph JH esterase is likelyof multiple tissue origin for the prewandering peak with thefat body excluded as a source for the prepupal peak; an inhibitoryfactor from the brain and JH regulate JH esterase biosynthesis.In adult cabbage loopers, Trichoplusia ni, elevated hemolymphJH esterase activity appeared to be important in reducing theJH titer and preventing egg maturation. Structure/activity datawith trifluoromethylketones were incorporated into the designof a novel, JH esterase inhibitor, the sulfone and hydrate ofoctylthio-1,1,1- trifluoropropan-2-one, with selective and persistent,in vivo inhibitory activity. The topical application of thiscompound to last instar larvae and virgin adults of T. ni producedjuvenizing effects (delayed pupation and induced egg maturation/oviposition,respectively) providing direct evidence of a functional rolefor JH esterase in lepidopteran development.  相似文献   

5.
Juvenile hormone (JH) is one of the key insect hormones that regulate metamorphosis. Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH metabolism and catalyzes JH diol to form a polar end product, JH diol phosphate that has no JH activity. In this study, a JHDK complementary DNA (cDNA) was cloned from Spodoptera litura and the structure and expression of the gene was characterized. The cDNA was 714 base pairs in length and encoded a protein of 183 amino acids with a molecular mass of 21 kDa and an isoelectric point of 4.55. Based on the structure, three putative calcium binding motifs and guanosine triphosphate‐binding motifs were predicted in the protein. Modeling of the 3‐D structure showed that the protein consisted of eight α‐helixes linked with loops, with no β‐sheets. The gene was expressed in the epidermis, fat body and midgut of fifth and sixth instar larvae. The expression level in the epidermis was lower than in the fat body and midgut. The gene was expressed at higher levels at the early stages than in the later stages of fifth and sixth instar midgut and fat body. The results suggest that this gene may be involved in the regulation of the JH titer in larvae of S. litura.  相似文献   

6.
A partition assay was developed to measure insect juvenile hormone (JH) I and III metabolism in biological samples containing both JH esterase and JH epoxide hydrolase activity. The assay utilizes commercially available radiochain 3H-labeled JH as substrate and the selective JH esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone. JH partitions into an isooctane phase and the metabolites JH acid, JH diol, and JH diol-acid into aqueous methanol after incubation of JH substrate with inhibited and uninhibited sample. The assay provides a time- and cost-efficient alternative to the currently available thin-layer chromatography method for the measurement of JH esterase and epoxide hydrolase activity.  相似文献   

7.
8.
A thin-layer chromatographic assay was developed for the resolution of hydrolytic and conjugative catabolites of juvenile hormone (JH). A single-dimension, dual-development thin-layer system allowed complete resolution of the catabolites. Thus, this system provided a means for the rapid and economic analysis of JH hydrolysis even when different hydrolytic activities were present concurrently. Purified hydrolytic enzymes were found to be superior to chemical methods for the generation of small amounts of standards of JH catabolites. The relative levels of activities of an epoxide hydrolase and an esterase toward JH III were found to be similar in microsomal preparations from three lines of adult Drosophila melanogaster isolated from a field population. However, selection of flies by exposure to cut orange resulted in the elevation of levels of epoxide hydrolase activities, whereas esterase levels were not affected to the same extent. The formation of the JH acid-diol was not detected under the conditions of this study, suggesting that the JH acid and diol were not good substrates for epoxide hydrolase and juvenile hormone esterase, respectively.  相似文献   

9.
The physiological balance of juvenile hormone (JH) in insects depends on its biosynthesis and degradation pathway. Three key enzymes namely, juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK) are required for degradation in insects. Our present results showed that JHE and JHEH exhibited expression in almost all the tissues. This indicated that JHE and JHEH might degrade JH simultaneously. In addition, the highest levels of JHDK were observed in the midgut, with trace level being found in the malpighian tubule and haemocytes. Since the midgut is a digestive organ and not a JH target, it was hypothesized that both JHE and JHEH hydrolyzed JH to JH diol (JHd) which was then transported to midgut and hydrolyzed further by JHDK, to be finally excreted out of the body. Also the expression studies on JH degradation enzymes in different tissues and stages indicated that the activities of the three enzymes are specific and coincident with the JH functions in silkworm, Bombyx mori L.  相似文献   

10.
JH III esterase and JH III epoxide hydrolase (EH) in vitro activity was compared in whole body Trichoplusia ni homogenates at each stage of development (egg, larva, pupa and adult). While activity of both enzymes was detected at all ages tested, JH esterase was significantly higher than EH activity except for day three of the fifth (last) stadium (L5D3). For both enzymes, activity was highest in eggs. Adult virgin females had 4.6- and 4.0-fold higher JH esterase and EH activities, respectively, than adult virgin males. JH III metabolic activity also was measured in whole body homogenates of fifth stadium T. ni that were fed a nutritive diet (control) or starved on a non-nutritive diet of alphacel, agar and water. With larvae that were starved for 6, 28 and 52 h, EH activity per insect equivalent was 48%, 5% and 1%, respectively, of the control insects. At the same time points, JH esterase activity levels in starved T. ni were 29%, 4% and 3% of that of insects fed the nutritive diet. Selected insect hormones and xenobiotics were administered topically or orally to fifth stadium larvae for up to 52 h, and the effects on whole body EH and JH esterase activity analyzed. JH III increased the JH III esterase activity as high as 2.2-fold, but not the JH III EH activity. The JH analog, methoprene, increased both JH esterase and EH activity as high as 2.5-fold. The JH esterase inhibitor, 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP), had no impact on EH activity. The epoxides trans- and cis-stilbene oxide (TSO and CSO) in separate experiments increased the EH activity approximately 2.0-fold. TSO did not alter JH esterase levels when topically applied, but oral administration reduced activity to 70% of the control at 28 h, and then increased the activity 1.8-fold at 52 h after the beginning of treatment. CSO had no effect on JH esterase activity. Phenobarbital increased EH activity by 1.9-fold, but did not change JH esterase levels. Clofibrate and cholesterol 5alpha,6alpha-epoxide had no effect on EH. JH esterase activity also was not affected by clofibrate, but cholesterol 5alpha,6alpha-epoxide reduced the JH esterase activity to 60-80% of the control. The biological significance of these results is discussed.  相似文献   

11.
cDNAs encoding two different epoxide hydrolases (nCfEH1 and nCfEH2) were cloned from a cDNA library prepared from the wandering larval stage of the cat flea, Ctenocephalides felis. Predicted translations of the open reading frames indicated the clones encoded proteins of 464 (CfEH1) and 465 (CfEH2) amino acids. These proteins have a predicted molecular weight of 53 kDa and a putative 22 amino acid N-terminal hydrophobic membrane anchor. The amino acid sequences are 77% identical, and both are homologous to previously isolated epoxide hydrolases from Manduca sexta, Trichoplusia ni, and Rattus norvegicus. Purification of native juvenile hormone epoxide hydrolase (JHEH) from unfed adult cat fleas generated a partially pure protein that hydrolyzed juvenile hormone III to juvenile hormone III-diol. The amino terminal sequence of this;50-kDa protein is identical to the deduced amino terminus of the protein encoded by the nCfEH1 clone. Affinity-purified rabbit polyclonal antibodies raised against Escherichia coli-expressed HisCfEH1 recognized a approximately 50-kDa protein present in the partially purified fraction containing JHEH activity. Immunohistochemistry experiments using the same affinity-purified rabbit polyclonal antibodies localized the epoxide hydrolase in developing oocytes, fat body, and midgut epithelium of the adult flea. The presence of JHEH in various flea life stages and tissues was assessed by Northern blot and enzymatic activity assays. JHEH mRNA expression remained relatively constant throughout the different flea larval stages and was slightly elevated in the unfed adult flea. JHEH enzymatic activity was highest in the late larval, pupal, and adult stages. In all stages and tissues examined, JHEH activity was significantly lower than juvenile hormone esterase (JHE) activity, the other enzyme responsible for JH catalysis.  相似文献   

12.
Summary The role of juvenile hormone (JH) esterases in relation to the diapause state of the southwestern corn borer,Diatraea grandiosella, was examined. The facultative larval diapause of this insect is dependent upon the presence of JH. Plasma, fat body, midgut, and body wall extracts metabolized [3H]JH I and [3H]JH III to JH-acid in vitro. JH-diol, JH-acid-diol, or conjugated polar metabolites were not detected. A longer half life of [3H]JH I was found in vitro in the plasma of diapausing larvae than in that of non-diapausing larvae. Although JH hydrolytic activity was relatively low in the plasma of pre-diapausing and diapausing larvae, systematic changes were observed suggesting that JH esterases may be involved in regulating the JH titer during this period. The JH hydrolytic activity found in the plasma of diapausing larvae was 3 to 5 times lower than that found in the plasma of mid-last instar non-diapausing larvae. Gel filtration profiles obtained from the plasma of diapausing and non-diapausing larvae suggested that JH esterases and -naphthyl-acetate esterases are different enzymes. Multiple overlapping peaks of JH hydrolytic activity with an apparent molecular weight range of 43,000 to 75,000 were detected, whereas 2 separate peaks of -naphthyl-acetate hydrolytic activity (apparent mol. wt. ca. 54,000, and 120,000) were detected. Gel filtration of supernatants of fat body indicated that JH was hydrolyzed at a lower rate by the fat body of pre-diapausing larvae than by that of non-diapausing larvae.  相似文献   

13.
14.
Both allatotropic and allatostatic activities were found in crude extracts of brain from adult and larval Eri silkworm, Samia cynthia ricini, but it seems that allatotropic activity dominates in each stage. There was a high level of allatotropic activity in the crude extract of brain from newly emerged female adults, but allatostatic activity appeared in the bioassay when excessive amounts of crude extracts of brain were added. Crude extracts of brain from premoulting fourth‐instar larvae and from newly ecdysed fifth‐instar larvae exhibited allatotropic activities, whereas extracts of brain from the second and third day of the fifth‐instar larvae inhibited juvenile hormone (JH) release slightly. Allatotropic activity from the brains of adults and larvae stimulated both adult and larval corpora allata (CA) to synthesize JH. Manduca sexta allatotropin (AT) (Mas‐AT) and M. sexta allatostatin (AST) (Mas‐AST) also stimulated and inhibited both adult and larval S. cynthia ricini CA to synthesize JH, respectively. Higher concentrations of Mas‐AT (10?4 or 10?3 M) showed an inhibitory effect on adult CA. CA from newly emerged female adults were the most sensitive to inhibition by Mas‐AST, whereas CA from female pharate adults at about 6 h before adult emergence were the most sensitive to stimulation by Mas‐AT and S. cynthia ricini brain allatotropic activity. An extract of brain and Mas‐AT induced some of the non‐active female pharate adult CA at 12 h before emergence to synthesize a small amount of JH.  相似文献   

15.
The effects of juvenile hormone, antiallatotropins, selected surgical procedures and starvation on the juvenile hormone esterase levels in Galleria larvae and pupae were investigated. JH reduced JH esterase activity in larvae but induced the enzyme in 1-day-old pupae. In vitro studies confirmed that the peak of synthesis and/or release of JH esterase from the fat body of last instar larvae occurred 4 days after ecdysis. These studies also showed that fat body from JH-treated larvae released much less enzyme than controls. Antiallatotropins, precocene 2 and ZR 2646 also reduced JH esterase levels in larvae, but ZR 2646 induced JH esterase in pupae. In starved larvae, JH esterase did not increase during the first five days. A minimum of 36 hr of feeding was necessary for the larval esterase activity to increase on schedule on day 4 of the last larval stadium. When day-l larvae were ligated behind the head or the prothorax, they had lower JH esterase levels and yet showed a slight increase in the enzyme when the larvae reached the age of 4 days. The significance of these results is discussed in relation to the possible control of esterase activity during metamorphosis.  相似文献   

16.
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.  相似文献   

17.
Four esterase isozymes hydrolyzing α-naphthyl acetate (α-NA) were detected screening whole body homogenates of larvae and adults of Ips typographus by electrophoresis. Two of the four isozymes (isozymes 3 and 4) were not detected by α-NA staining in the pupal stage, but topical application of juvenile hormone III (JH III) on the pupa induced these isozymes. The JH esterase (JHE) activity on the gel was associated with the proteins of isozyme 2. The compounds OTFP, PTFP, and DFP inhibited this catalytic activity of isozyme 2 on the gel at low concentrations, whereas the proteins of isozyme 3 and 4 were affected only at higher concentrations. A quantitative developmental study was performed to characterize which of the esterases hydrolyzed JH III, using a putative surrogate substrate for JH (HEXTAT) and α-NA. The I50 of several esterase inhibitors and the JH metabolites were also defined. All findings supported the results that a protein associated with isozyme 2 is catabolizing JH and that isozymes 3 and 4 are the main contributors to the general esterase activity on α-NA. The JHE from Tenebrio molitor was purified by affinity chromatography. Although the recovery was low, an analytical isoelectric focusing gel showed that the JHE activity of the purified enzyme. T. molitor cochromatographed at the same pl as the JHE activity of I. typographus. Arch. Insect Biochem. Physiol. 34:203–221, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The role of juvenile hormone (JH) esterase (JHE) and epoxide hydrolase (EH) in reproduction of the cotton bollworm, Helicoverpa zea, was investigated. Peak emergence of male and female bollworm adults occurred early in the scotophase. Female adults were added to males in a 1:2 ratio, respectively, at the beginning of the first photophase after emergence (d0). The highest oviposition rates for mated females were noted on d 2-4. The in vitro JH III esterase and JH III EH activity was measured in whole body homogenates of virgin and mated females from d0 to d8 post-emergence. Maximal JHE activity for virgin females occurred on d2 (1.09+/-0.14(+/-1 SEM) nmol of JH III degraded/min/mg protein), which was approximately twice that of mated females on the same day. The same results were observed for EH where the activity peaked on d2 at 0.053+/-0.003 as compared to 0.033+/-0.003 nmol of JH III degraded/min/mg protein, respectively. By d4, both JHE and JH EH activities declined significantly in virgin and mated females and were the same through d7. The developmental changes and effects of mating on JH degradation were similar when measured per insect. The highest levels of JHE and JH EH activity/min/mg protein in d2 virgin and mated females was found in ovaries followed by the carcass and then haemolymph; no EH activity was found in haemolymph as expected. For ovary, the JHE and JH EH activity was highest in virgin compared to mated females. The role of both enzymes in the regulation of reproduction is discussed.  相似文献   

20.
《Journal of Asia》2002,5(2):175-180
Diflubenzuron (DFB) has been known to prevent metamorphosis of silkworm, Bombyx mori, from larval to pupal stage at low dose exposure. To explain this inhibitory action of DFB, a hypothesis was raised that DFB acts like juvenile hormone (JH) or DFB inhibits JH esterase to increase endogenous JH titer. A JH bioassay using isolated abdomen clearly indicates that DFB does not act as JH analog because DFB did not induce vitellogenesis in the isolated female abdomen, while endogenous JHs did significantly. General esterase activities in hemolymph were lower in DFB-treated fifth instar larvae than in the control larvae, but there was no difference between fat body esterase activities in both groups. Two hemolymph esterases (‘E1’ and ‘E2’) of the fifth instar larvae were separated and visualized by α-and β-naphthyl acetate. From in vitro incubation experiment, the cathodal esterase (‘E1’) was sensitive to DFB at its nanomolar range. Considering the fact that early fifth instar larvae have high level of JH esterase in the hemolymph, these results suggest that DFB inhibit larval to pupal metamorphosis by blocking JH degradation, which increases endogenous JH titer especially at the critical period when the larvae determine metamorphic development at the following molt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号