首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential (ΨL), osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance (g S) across species throughout the year, and assessed tissue damage by subzero temperatures during winter. Species behavior was highly dependent on rooting depth. Substantial osmotic adjustment (up to 1.2?MPa) was observed in deep-rooted species exhibiting relatively small seasonal variations in ΨL and with access to a more stable water source, but having a large difference between predawn and midday ΨL. On the other hand, shallow-rooted species exposed to large seasonal changes in ΨL showed limited osmotic adjustment and incomplete stomatal closure, resulting in turgor loss during periods of drought. The bulk leaf tissue elastic modulus (ε) was lower in species with relatively shallow roots. Daily variation in g S was larger in shallow-rooted species (more than 50?% of its maximum) and was negatively associated with the difference between ΨL at the turgor loss point and minimum ΨL (safety margin for turgor maintenance). All species increased ε by about 10?MPa during winter. Species with rigid tissue walls exhibited low leaf tissue damage at ?20?°C. Our results suggest that osmotic adjustment was the main water relationship adaptation to cope with drought during summer and spring, particularly in deep-rooted plants, and that adjustments in cell wall rigidity during the winter helped to enhance freezing tolerance.  相似文献   

2.
Background and AimsGypsum drylands are widespread worldwide. In these arid ecosystems, the ability of different species to access different water sources during drought is a key determining factor of the composition of plant communities. Gypsum crystallization water could be a relevant source of water for shallow-rooted plants, but the segregation in the use of this source of water among plants remains unexplored. We analysed the principal water sources used by 20 species living in a gypsum hilltop, the effect of rooting depth and gypsum affinity, and the interaction of the plants with the soil beneath them.MethodsWe characterized the water stable isotope composition, δ 2H and δ 18O, of plant xylem water and related it to the free and gypsum crystallization water extracted from different depths throughout the soil profile and the groundwater, in both spring and summer. Bayesian isotope mixing models were used to estimate the contribution of water sources to plant xylem sap.Key ResultsIn spring, all species used free water from the top soil as the main source. In summer, there was segregation in water sources used by different species depending on their rooting depth, but not on their gypsum affinity. Gypsum crystallization water was the main source for most shallow-rooted species, whereas free water from 50 to 100 cm depth was the main source for deep-rooted species. We detected plant–soil interactions in spring, and indirect evidence of possible hydraulic lift by deep-rooted species in summer.ConclusionsPlants coexisting in gypsum communities segregate their hydrological niches according to their rooting depth. Crystallization water of gypsum represents an unaccounted for, vital source for most of the shallow-rooted species growing on gypsum drylands. Thus, crystallization water helps shallow-rooted species to endure arid conditions, which eventually accounts for the maintenance of high biodiversity in these specialized ecosystems.  相似文献   

3.
Abstract. We quantified the spatial distribution of roots of individual plants using detailed drawings from the literature of species of grasses, forbs, and shrubs in the Central Great Plains grasslands of North America. We scanned each two-dimensional drawing electronically and used ARC/INFO, a Geographic Information System, to calculate root length (cm) and density (cm root length/cm soil) with depth in the soil profile. We then selected one of three mathematical models that best fit the data, and classified each species as either shallow-, medium- or deep-rooted. 66 root drawings from 55 species were evaluated. Most plants were shallow-rooted with largest root densities occurring at depths < 20 cm; most maximum rooting depths were > 1m. Grasses had the shallowest maximum depth and shrubs the deepest. Deep-rooted forbs had the smallest root densities by depth. Most plants had two sections to their distribution of root density: an initial increase from the soil surface followed by a decrease in density with increasing depth. Our results suggest that the abundance and importance of different species and growth forms in North American grasslands is related to similarities and differences in the spatial distributions of their root systems. Our approach provides quantitative information on root distributions to be used for comparisons among species, and in simulation modeling analyses that could not be done with conventional methods that are qualitative in nature.  相似文献   

4.
Adaptations of species to capture limiting resources is central for understanding structure and function of ecosystems. We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (ΨLeaf), hydraulic conductivity, wood density (ρw), rooting depth, and specific leaf area (SLA) were measured during two summers. Water potentials in the upper soil layers during a summer drought ranged from −2.3 to −3.6 MPa, increasing to −0.05 MPa below 150 cm. Predawn ΨLeaf was used as a surrogate of weighted mean soil water potential because no statistical differences in ΨLeaf were observed between exposed and covered leaves. Species-specific differences in predawn ΨLeaf were consistent with rooting depths. Predawn ΨLeaf ranged from −4.0 MPa for shallow rooted shrubs to −1.0 MPa for deep-rooted shrubs, suggesting that the roots of the latter have access to abundant moisture, whereas shallow-rooted shrubs are adapted to use water deposited mainly by small rainfall events. Wood density was a good predictor of hydraulic conductivity and SLA. Overall, we found that shallow rooted species had efficient water transport in terms of high specific and leaf specific hydraulic conductivity, low ρw, high SLA and a low minimum ΨLeaf that exhibited strong seasonal changes, whereas deeply rooted shrubs maintained similar minimum ΨLeaf throughout the year, had stems with high ρw and low hydraulic conductivity and leaves with low SLA. These two hydraulic syndromes were the extremes of a continuum with several species occupying different portions of a gradient in hydraulic characteristics. It appears that the marginal cost of having an extensive root system (e.g., high ρw and root hydraulic resistance) contributes to low growth rates of the deeply rooted species.  相似文献   

5.
Can hydraulic redistribution put bread on our table?   总被引:1,自引:0,他引:1  
Hydraulic redistribution is the process where soil water is translocated by plant roots from wet to dry areas as it is drawn through xylem pathways by a water potential gradient. Hydraulic redistribution places soil water resources where they would otherwise not be, which results in a range of ecological and hydrological consequences. Although deep-rooted plants can transfer water up from depth into shallow soil layers, any localised ??irrigation?? of neighbouring plants tends to be obscured by recovery of the very same water by the donor plants during daytime transpiration. A new intercropping system was recently trialled which eliminates transpiration by the donor plant through complete shoot removal in order to maximise hydraulic redistribution. In the absence of any transpiring shoots, the donor plants are left to wick water up from depth 24 hours a day via their root systems, to the benefit of neighbouring shallow-rooted crops. This system allows deeper-rooted ??nurse plants?? to capture water that is out of reach of crops in a ??water safety-net?? role, which may be of considerable benefit in water-scarce environments.  相似文献   

6.
伊乐藻和黑藻断枝根和芽的发生及生长研究   总被引:2,自引:0,他引:2  
为了解外来种伊乐藻的无性繁殖力、评价其生态安全性,采用插植方式比较研究了伊乐藻(Elodea nuttallii)和本土种黑藻(Hydrilla verticillata)两种沉水植物不同节数(1至4节)和不同节位断枝的不定根和新芽的发生及生长情况。通过室内4周的3次平行实验,结果表明:两者顶芽段均有形成不定根继而形成新植株的能力,而顶芽以下茎段只有本身具有腋芽的断枝才有形成新芽和不定根的能力。两者具相同节数的断枝形成不定根的百分率及根、芽长度,以具顶芽断枝的均明显高于不具顶芽断枝的,具顶芽四节断枝的不定根生成率最高达到90%以上。不具顶芽断枝形成新芽和不定根的百分率及长度随着断枝节数的增加均呈显著递增趋势,每类断枝的发芽率显著大于其生根率;伊乐藻和黑藻枝条一般分别每7节和5节具有一个腋芽,只有具腋芽断枝才能存活,因此,对不具顶芽断枝,7节和5节分别是其形成新苗所需的最短断枝长度。根和芽的长度随节位的下降大致呈递增的趋势。但是节数对形成根、芽的影响显著大于节位的影响。具顶芽断枝的顶芽的增长量和具顶芽4节断枝的生物量增量伊乐藻的高于黑藻,其余指标伊乐藻均显著低于黑藻。伊乐藻断枝的繁殖力总体上低于黑藻。    相似文献   

7.
? Mediterranean-type ecosystems contain 20% of all vascular plant diversity on Earth and have been identified as being particularly threatened by future increases in drought. Of particular concern is the Cape Floral Region of South Africa, a global biodiversity hotspot, yet there are limited experimental data to validate predicted impacts on the flora. In a field rainout experiment, we tested whether rooting depth and degree of isohydry or anisohydry could aid in the functional classification of drought responses across diverse growth forms. ? We imposed a 6-month summer drought, for 2?yr, in a mountain fynbos shrubland. We monitored a suite of parameters, from physiological traits to morphological outcomes, in seven species comprising the three dominant growth forms (deep-rooted proteoid shrubs, shallow-rooted ericoid shrubs and graminoid restioids). ? There was considerable variation in drought response both between and within the growth forms. The shallow-rooted, anisohydric ericoid shrubs all suffered considerable reductions in growth and flowering and increased mortality. By contrast, the shallow-rooted, isohydric restioids and deep-rooted, isohydric proteoid shrubs were largely unaffected by the drought. ? Rooting depth and degree of iso/anisohydry allow a first-order functional classification of drought response pathways in this flora. Consideration of additional traits would further refine this approach.  相似文献   

8.
9.
Unused inorganic nitrogen (Ninorg) left in agricultural soils will typically leach to deeper soil layers. If it moves below the root zone it will be lost from the system, but the depth of the root zone depends on the crop species grown. In this experiment we studied the effect of 3-year crop sequences, with different combinations of deep-rooted and shallow-rooted crops, on soil Ninorg dynamics to 2.5 m soil depth and the possibility of crop utilization of N leached to deep soil layers. We grew ten different crop sequences for 3 years. The crops and catch crops grown were selected to allow different sequences of deep-rooted and shallow-rooted crops. Very different rooting depths were obtained, from only 0.5 m (leek), to ∼1.0 m (ryegrass and barley), 1.5 m (red beet), 2.0 m (fodder radish and white cabbage) and more than 2.5 m by the chicory catch crop. The results showed a significant retention of Ninorg within the 2.5 m soil profile from one year to the next, but the retained N had leached to deeper parts of the profile during the winter season. Only little Ninorg was retained over two winter seasons. The retention in the deeper soil layers allowed Ninorg to be taken up by succeeding deep-rooted main crops or catch crops. The effects of crop rooting depth on Ninorg in the subsoil layers from 1.0 to 2.5 m were striking. White cabbage reduced Ninorg below 1.0 m with up to 113 kg N ha-1 during its growth. Grown after catch crops, leek and red beet left on average 60 kg N ha−1 less below 1.0 m than leek and red beet grown without a preceding catch crop. We conclude that it is possible to design crop rotations with improved nitrogen use efficiency by using the differences in crop rooting patterns; deep-rooted crops or catch crops can be used to recover Ninorg leached after previous crops, and catch crops can be grown before shallow-rooted crops to lift the deep Ninorg up to layers where these crops have their roots.  相似文献   

10.
Chunhua Liu  Dan Yu 《Hydrobiologia》2009,623(1):251-256
Alternanthera philoxeroides (Mart.) Griseb. is one of many aggressive invasive plants that can grow in diverse habitats. Aquatic A. philoxeroides forms dense floating mats over the water surface. However, when water levels decrease during winter, some mats become stranded on exposed sediments and are thus exposed to air. Do the stems of these mats possess the capacity to develop new shoots during the next growing season? In this study, we examined the sprouting of sediment-stranded over-wintering mats of A. philoxeroides. Stems of the over-wintering mats were divided into three types (dry, withered, and fresh stems) depending on moisture content and were immersed in water for 4 weeks to observe the sprouting of axillary buds and roots. The results showed that withered stems yielded much more biomass than dry or fresh stems. Stem moisture content significantly affected the sprouting rate and the length growth rate of buds and roots. Dry stems lacked reproductive capacity. The sprouting rate and length growth rate of the buds and roots were higher in fresh stems than in withered stems. Furthermore, the mean values of the bud sprouting rate and the bud length growth rate were highest during the first week, i.e., most of buds sprouted within 1 week or less. Our results suggest that more than 70% (on a dry weight basis) of the stems in stranded mats possessed rapid sprouting capacity even after over-wintering on the sediment for more than 2 months. This strategy may be an adaptation to the fluctuations inherent in many aquatic habitats, and it possibly explains why A. philoxeroides can flourish even after a dry winter. Handling editor: S. M. Thomaz  相似文献   

11.
Suzuki, T. 1990. Apical dominance in mulberry ( Morus alba ): Effects of position of lateral and accessory buds and leaves. – Physiol. Plant. 78: 468-474.
Removing apical portions of current growth coppice shoots from field-grown, low-pruned stumps of mulberry ( Morus alba L. cv. Shin-ichinose) caused sprouting of one or more upper main buds, almost concurrently with that of accessory buds. However, removal of the new sprouts, including those from accessory buds, slightly enhanced the sprouting of buds immediately below them, and did not affect buds lower down. In contrast, mature leaves inhibited the buds in their axils. Budless, leafy nodes on the upper part of pruned shoots tended to swell after treatment, perhaps due to the accumulation of substances translocated from the roots and possibly from the remaining leaves. Lateral buds at different positions along the shoot differed in their sprouting ability with buds lower on the shoot being more inhibited. This inhibition gradient dissappeared when all coppice shoots on one stump were pruned to the same bud position, suggesting inhibition from neighboring, actively growing shoots. These results demonstrate that acropetal influences are important in bud dominance relationships.  相似文献   

12.
Hydraulic lift occurs in some deep-rooted shrub and herbaceous species. In this process, water taken up by deep roots from the moist subsoil is delivered to the drier topsoil where it is later reabsorbed by shallow roots. However, little is known about the existence of hydraulic lift in shallow-rooted xeric species. The objectives of this study were 1) to ascertain whether hydraulic lift exists in Gutierrezia sarothrae (broom snakeweed), a widespread North American desert species with a shallow root system, grown in pot and field conditions and 2) if it does, how much water can be transferred from the subsoil to the 30 cm topsoil during the night. Snakeweed seedlings were transplanted in buried pots allowing the deeper roots to grow into the subsoil 30 cm below the surface. Soil water content inside and outside of the pot was measured seasonally and diurnally with time domain reflectometry technique (TDR). An increase in water content was detected in the pot after the plant was covered for 3 h by an opaque plastic bag during the day, suggesting hydraulic lift from deeper depths and exudation of water into the drier topsoil. Root exudation was also observed on native range sites dominated by snakeweed. Water efflux in the pot was 271 g per plant per night. which was equivalent to 15.3% of the extrapolated, porometer-derived whole-plant daily transpiration. Hydraulic lift observed in Gutierrezia improved water uptake during the day when evaporative demand is high and less water is available in the topsoil. We concluded that hydraulic lift might help snakeweed to alleviate the effect of water stress.  相似文献   

13.
The depth of the root system controls the maximum amount of soil water that can be transpired by the vegetation into the atmosphere during dry periods. Water uptake from deep soil layers has been found to contribute significantly to the dry season transpiration at some sites in Amazonia and it has been estimated that large parts of the evergreen forests in Amazonia depend on deep roots to survive the dry season. Thus, the presence of deep roots might provide a significant source of atmospheric moisture during the dry season, and one which would be affected by deforestation. We investigate the role of deep-rooted vegetation and its removal in the context of Amazonian deforestation using an atmospheric General Circulation Model (GCM). A distribution of deep roots is obtained by a numerical optimization approach. The simulated climate with the use of the calculated deep roots substantially improves the seasonal characteristics of the GCM. Three additional simulations are then conducted in order to isolate the effect of rooting depth reduction from other parameter changes associated with large-scale deforestation. Most of the climatic effects occur during the dry season and are attributed to the reduction of rooting depth. Dry periods are found to last longer, being more intense with drier and warmer air, while the wet season remains fairly unchanged. The implications of these climatic effects for the re-establishment of the natural evergreen forest are discussed.  相似文献   

14.
15.
Entire root systems of saplings of five canopy species and of six shrub and treelet species growing in lowland mixed dipterocarp forest at Andulau, Brunei were excavated and measured. Referring to a prior study at Gigante, Panama, two-way, fixed-factor ANOVAs were used to compare life–forms and sites. Rooting depth and the proportion of root surface area in the upper 20 cm of soil did not differ significantly between life-forms because some treelets/shrubs at Andulau were deep-rooted; all saplings studied were deep-rooted. The root:leaf area ratios of both saplings and treelets/ shrubs at Andulau were significantly higher than those at Gigante. We attribute this strong difference to the lower soil content of available nutrients at Andulau where rainfall shortage is less severe and regular than at Gigante. Available data on life-form composition and mortality rates in large plots are consistent with our proposal that shallow-rooted shrubs and treelets are more vulnerable to drought than deep-rooted life-forms. We suggest that future studies of water use partitioning, wood anatomy, leaf morphology, and associations with neighboring plants would benefit from an explicit examination of their relation to rooting depth.  相似文献   

16.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   

17.
Abstract: Hoffmannseggia glauca is a perennial weed that has tubers and root-borne buds. Some authors only consider root tubers without mentioning root-borne buds, while others consider that more anatomic studies become necessary to determine the origin of these structures and to interpret their behaviour. The objectives are: to study the growth form of the plant in order to analyze the ontogeny of its propagation organs, and to study its shoot and root anatomical characters that affect water conductivity. Hoffmannseggia glauca was collected in Argentina. Development of its shoot and root systems was observed. Shoots and roots were processed to obtain histological slides. Macerations were prepared to study vessel members. Primary and lateral roots originate buds that develop shoots at the end of the first year. In winter, aerial parts die and only latent buds at soil surface level and subterranean organs remain. In the following spring, they develop innovation shoots. Roots show localized swellings (tuberous roots), due to a pronounced increase of ray thickness and parenchymatous proliferation in the root center. Root vessel members are wider than those of aerial and subterranean shoots. Early development of an extensive root system, presence of root borne buds, anatomic and physiological specialization of innovation shoots, capability of parenchymatous rays to originate buds and tuberous roots, and high water transport efficiency in subterranean organs lead Hoffmannseggia glauca to display higher colonization potential than other species.  相似文献   

18.
Aims  To delimit areas of endemism in the Patagonian steppe using endemicity analysis (EA), which evaluates areas of endemism by means of an endemicity index, and to compare the resulting endemic areas with those proposed for the Patagonian steppe by previous authors.
Location  The Patagonian steppe, a region of South America found approximately below parallel 36° S to the east of the Andes Mountains.
Methods  Distributional data for 159 species of insects collected in the Patagonian steppe, and consisting of 1317 georeferenced samples were used to identify areas of endemism. A data grid of presence and absence (with cells of 1° × 1°) was constructed. Initially, two different types of EA were performed, seeking areas defined by 'four or more' species. A first analysis was performed without taking into consideration those quadrats where no species had been recorded (empty quadrats), which in many cases meant a discontinuous distribution. The second analysis was performed assuming a continuous distribution for each species. A third analysis, assuming continuous distributions, was performed using 'three or more' as the number of species necessary for an area to be identified as an endemic area.
Results  In the first two analyses, EA recognized the same five areas of endemism: western Patagonia, south-western Payunia, northern Suabandean, southern Subandean and Austral Patagonia. The results of the third analysis allowed the identification of three more areas of endemism: northern Payunia, Chubutian and Santacrucian.
Main conclusions  We identified five areas of endemism for the Patagonian steppe, some of which have been defined in previous contributions. These areas are: Western Patagonia, Payunia and Subandean Patagonia (which can be divided into septentrional and meridional), Central Patagonia (Chubutence and Santacrucense) and Austral Patagonia.  相似文献   

19.
Root sprouting in Rumex acetosella under different nutrient levels   总被引:5,自引:0,他引:5  
Growth of Rumex acetosella, a root sprouting plant, was studied in a pot experiment. Each plant of R. acetosella consisted of two ramets which were interconnected by a root about 9 cm long. One of the ramets was placed in a compartment with nutrient-rich soil, the other with nutrient-poor soil. The root connection between the ramets either remained intact or was severed at the nutrient interface after planting. Growth of new roots was prevented at the nutrient interface.The presence of a connection between the ramets did not affect biomass or shoot production in either soil compartment, indicating a poor integration of the interconnected plant systems. In the nutrient-rich environment, two to four times more shoots and biomass were produced than in the low nutrient regime. A large proportion of buds initiated on roots remained dormant, forming a bud bank. When the number of shoots or buds was expressed per g of root dry weight or per m of root length, the nutrient response was no longer evident or, in a few cases, a significant effect in the opposite direction was obtained. These results show that the greater production of buds and shoots in the nutrient-rich environment reflected an allometric relationship between root biomass and the number of buds and shoots initiated on the roots.  相似文献   

20.
Dodd  M. B.  Lauenroth  W. K. 《Plant Ecology》1997,133(1):13-28
We analyzed soil water data from three sites with different soil textures in the shortgrass steppe of northeastern Colorado, USA. Our objective was to evaluate the relationship between the occurrence of plant functional types and the effect of soil texture on soil water availability. Soil water availability was greatest in the upper soil layers at all three sites, but the loamy sand site had significantly greater soil water availability than the sandy clay loam and sandy clay sites in wetter years at depths below 60 cm. Calculations of proportional water availability by layer using both field data and fifty-year soil water model simulations, showed that the sandy clay loam and sandy clay soils on average had greater water availability in layers 30 cm and above, but that the loamy sand had the greatest water availability in layers beneath this, particularly at 105 cm. This observation can be linked to the occurrence of a fine textured subsoil at this site. The textural pattern in the loamy sand profile effectively creates two water resources: a shallow pool accessible to all plants; and a deep pool accessible only to deep-rooted plants. This is offered as an explanation for the co-dominance of the two main plant functional types at the loamy sand site. At the other two sites, shallow-rooted shortgrass vegetation dominated, being more consistent with the general pattern for the area. Thus the patterns of vegetation structure at the three sites were consistent with the hypothesis. Aboveground net primary production data for the three sites, along with transpiration estimates from the model simulations, indicated that the additional water availability in the coarse textured soil was associated with higher overall plant productivity.Nomenclature: Taxonomic nomenclature follows R. L. McGregor & T. M. Barkley (1986) Flora of the Great Plains. Great Plains Flora Association. University Press of Kansas, Lawrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号