首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lysine-producing mutant Brevibacterium flavum HUT 8052, a threonine plus methionine (or threonine plus homoserine) auxotroph, grew rapidly as nearly as the wild strain in a medium supplemented with NaCl (60 µg/ml), threonine (100 µg/ml), and methionine (33.3 µg/ml). With NaCl concentrations less than 20 µg/ml, the mutant grew little or very slowly, The peculiar growth behavior of the mutant including the above phenomenon could be reasonably explained by the finding of Na+-dependent amino acids transport and the feedback inhibition of homoserine dehydrogenase by threonine in the bacterium.

The threonine transport was stimulated by Na+ and Li+. though the latter being less effective. The transport of threonine was inhibited by serine. The uptake of serine, isoleucine, leucine and valine was also stimulated by Na+  相似文献   

2.
Growth of rice callus tissue is discouraged when methionineis excluded from CMAA medium. While determining the methionineelimination effect, the amino acid interrelationships amongmethionine, lysine, threonine and isoleucine in the nutritionof the callus tissue were found. Poor growth, found in cultureson methionine deficient media was seen only when the media containedboth threonine and lysine, simultaneously. The substitutionof homoserine for methionine was also observed. Determination of free amino acid composition in tissues revealedthat free methionine was barely detectable in tissues grownwith sufficient amounts of threonine and lysine. When the concentrationof either threonine or lysine was reduced, the free methioninecontent of the tissue increased. When the methionine deficientmedium was supplemented with homoserine, the free methioninein the tissue increased, although the tissue retained a considerableamount of free threonine and lysine. Cultivation of tissue onan isoleucine deficient medium resulted in a significant decreasein free threonine content. These experimental results suggest that the biosynthetic pathwayto methionine is cooperatively inhibited by threonine and lysine,and that threonine decomposition is inhibited by its end productisoleucine. (Received February 19, 1970; )  相似文献   

3.
Abstract A mutant strain of Pseudomonas aeruginosa , PAC35, was shown to lack homoserine dehydrogenase activity. In minimal salt medium, with growth-limiting concentrations of homoserine, strain PAC35 excreted lysine into the medium and this did not occur when exogenous homoserine, or threonine, was in excess of requirements. The hom gene mapped at about 42 min on the PAO chromosome.  相似文献   

4.
A pyruvate kinase-lacking mutant of Brevibacterium flavum produced 22.6 g/liter of l-aspartic acid with glutamic acid as a by-product, when cultured for 48 hr in a medium containing 100 g/liter of glucose. The production clearly depended on the amount of biotin added. This strain, 70, was derived by several steps of mutation from wild strain 2247 producing glutamate, successively via a citrate synthase-defective glutamate auxotroph, strain 214, a prototrophic revertant, strain 15-8, producing 10 g/liter of l-aspartic acid, and an S-(2-aminoethyl)-l-cysteine-resistant mutant, strain 1-231, having low pyruvate kinase and homoserine dehydrogenase and producing lysine. Strain 70, a methionine-insensitive revertant from strain 1-231, had a normal level of homoserine dehydrogenase but no pyruvate kinase. Its citrate synthase activity was about half that of the wild strain at saturated concentrations of the substrates with Michaelis constants for oxalacetate and acetyl-CoA of 110 and 6 times as high as those of the wild-type enzyme, respectively. The mutational step for these alterations in citrate synthase was strain 15-8. Phosphoenolpyruvate carboxylase of strain 70 showed 1.5-fold higher activity in the crude extract at saturated concentrations of phosphoenolpyruvate, a lower Michaelis constant (1.5mM).for the substrate, phosphoenolpyruvate, less sensitivity to the feedback inhibition by aspartate, and higher sensitivities to the activators, acetyl-CoA and fructose-1,6-bisphosphate, than those of the wild strain. The concentrations of aspartate giving 50% inhibition were 6.2- and 4.5-fold higher in the absence and presence of acetyl-CoA, respectively.  相似文献   

5.
We report here the construction of a promoter-probe vector, pRS2, which can be utilized in either Acetobacter methanolicus MB 58 or Escherichia coli due to the presence of broad-host-range replicon RSF 1010. The vector provides several unique restriction sites for promoter cloning as well as resistance markers for the selection of transformants. The promoter-probe vector was constructed by inserting an EcoRI-SalI-polylinker fragment of pUC 19 into EcoRI/SalI digested pMK 16. The resulting plasmid, pRS1, was cloned into the unique EcoRI site of the broad-host-range plasmid RSF 1010. The vector was used to clone promoter-containing sequences derived from the A. methanolicus MB 58 chromosome as well as the E. coli lac-promoter.  相似文献   

6.
A homoserine auxotroph strain of Corynebacterium glutamicum accumulates storage compound trehalose with lysine when limited by growth. Industrially lysine is produced from C. glutamicum through aspartate biosynthetic pathway, where enzymatic activity of aspartate kinase is allosterically controlled by the concerted feedback inhibition of threonine plus lysine. Ample threonine in the medium supports growth and inhibits lysine production (phenotype-I) and its complete absence leads to inhibition of growth in addition to accumulating lysine and trehalose (phenotype-II). In this work, we demonstrate that as threonine concentration becomes limiting, metabolic state of the cell shifts from maximizing growth (phenotype-I) to maximizing trehalose phenotype (phenotype-II) in a highly sensitive manner (with a Hill coefficient of 4). Trehalose formation was linked to lysine production through stoichiometry of the network. The study demonstrated that the net flux of the population was a linear combination of the two optimal phenotypic states, requiring only two experimental measurements to evaluate the flux distribution. The property of linear combination of two extreme phenotypes was robust for various medium conditions including varying batch time, initial glucose concentrations and medium osmolality.  相似文献   

7.
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium hom dr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isoleucine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.  相似文献   

8.
Summary Mutagenesis and the subsequent selection of mesophyll diploid protoplasts ofNicotiana sylvestris on growth inhibitory concentrations of lysine plus threonine has led to the isolation of an LT-resistant mutant. Regeneration of this line (RLT 70) and analysis of its descendants demonstrated the dominant monogenic nuclear character of the resistance gene, further namedak-LT1. When the inhibition properties of aspartate kinase were examined in the homozygous mutant, lysine-sensitive activity could no longer be detected. In comparison, 70%–80% of the wild-type enzyme activity was usually inhibited by lysine, and the rest by threonine. Evidence for the existence of at least two AK isoenzymes was obtained by ion-exchange chromatography, where two peaks of activity could be detected: the first one to be eluted is lysine sensitive, and the second one threonine sensitive. One consequence of the altered regulation of AK in the mutant was the enhanced production of soluble threonine. Threonine accumulation was observed to occur throughout the life cycle of the mutant plant as well as in its different organs. In particular, leaves exhibited a 45-fold increment of soluble threonine, which corresponds to a 13-fold increase in total threonine: almost one-third of the total amino acids was free and proteinbound threonine. In RLT 70 seeds, 20% of the free amino acid pool was in the form of threonine (70-fold accumulation compared to the wild type), and total threonine content was increased five fold. As a general rule, the other amino acids were also more abundant in RLT 70 seeds, such that the total of amino acids present was between two to four times higher, but in contrast with the situation encountered in leaves, this was also due to a higher protein-bound amino acid content.  相似文献   

9.
Acetobacter methanolicus MB58 can grow on methanol. Since this substrate exhibits to be energy deficient there must be a chance to oxidize methanol to CO2 merely for purpose of energy generation. For the assimilation of methanol the FBP variant of the RuMP pathway is used. Hence methanol can be oxidized cyclically via 6-phosphogluconate. Since Acetobacter methanolicus MB58 possesses all enzymes for a linear oxidation via formate the question arises which of both sequences is responsible for generation of the energy required. In order to clarify this the linear sequence was blocked by inhibiting the formate dehydrogenase with hypophosphite and by mutagenesis inducing mutants defective in formaldehyde or formate dehydrogenase. It has been shown that the linear dissimilatory sequence is indispensable for methylotrophic growth. Although the cyclic oxidation of formaldehyde to CO2 has not been influenced by hypophosphite and with mutants both the wild type and the formaldehyde dehydrogenase defect mutants cannot grown on methanol. The cyclic oxidation of formaldehyde does not seem to be coupled to a sufficient energy generation, probably it operates only detoxifying and provides reducing equivalents for syntheses. The regulation between assimilation and dissimilation of formaldehyde in Acetobacter methanolicus MB58 is discussed.Abbreviations ATP Adenosine-5-triphosphate - DCPIP 2,6-dichlorphenolindophenol - DW dry weight - ETP electron transport phosphorylation - FBP fructose-1,6-bisphosphate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PMS phenazine methosulfate - RuMP ribulose monophosphate - Ru5P ribulose-5-phosphate - SDS sodiumdodecylsulphate - TCA tricarboxylic acid - TYB toluylene blue Dedicated to Prof. Dr. Dr. S. M. Rapoport on occasion of his 75th birthday  相似文献   

10.
The aspartate-derived amino-acid pathway leads to the production of the essential amino-acids lysine, methionine, threonine and isoleucine. Aspartate kinase (AK) is the first enzyme in this pathway and exists in isoforms that are feedback inhibited by lysine and threonine. Two maize (Zea mays L.) threonine-overproducing, lysine-insensitive AK mutants (Ask1-LT19 and Ask2-LT20) were previously isolated. The present study was conducted to determine the map location of Ask2 and to examine the amino-acid profiles of the Ask mutants. The threonine-overproducing trait conferred by Ask2-LT20 was mapped to the long arm of chromosome 2. Both mutants exhibited increased free threonine concentrations (nmol/mg dry weight) over wild-type. The percent free threonine increased from approximately 2% in wild-type kernels to 37–54% of the total free amino-acid pool in homozygous mutant kernels. Free methionine concentrations also increased significantly in homozygous mutants. Free lysine concentrations were increased but to a much lesser extent than threonine or methionine. In contrast to previous studies, free aspartate concentrations were observed to decrease, indicating a possible limiting factor in threonine synthesis. Total (free plus protein-bound) amino-acid analyses demonstrated a consistent, significant increase in threonine, methionine and lysine concentrations in the homozygous mutants. Significant increases in protein-bound (total minus free) threonine, methionine and lysine were observed in the Ask mutants, indicating adequate protein sinks to incorporate the increased free amino-acid concentrations. Total amino-acid contents (nmol/kernel) were approximately the same for mutant and wild-type kernels. In five inbred lines both Ask mutations conferred the threonine-overproducing phenotype, indicating high expressivity in different genetic backgrounds. These analyses are discussed in the context of the regulation of the aspartate-derived amino-acid pathway.  相似文献   

11.
The effect of two carbon sources (sucrose and acetate), aeration conditions and threonine concentration on the homoserine and lysine biosynthesis by the threonine-dependent mutant Brevibacterium flavum 2T was examined. It was demonstrated that acetate provided the predominant synthesis of homoserine to a far greater extent than sucrose (with the weight/weight ratio of homoserine : lysine being 2.5-5.0 and 0.8-1,2, respectively). The maximal level of homoserine and lysine was 18-21 and 3-7 g/l on the acetate containing medium and 18-22 and 12-16 g/l on the sucrose containing medium, respectively. On sucrose the total amount of amino acids and the total yield of products as related to the consumed substrate were greater than on acetate. Using the sucrose medium, the effect of aeration conditions and threonine concentration on the biosynthesis of both compounds was investigated. With an aeration increase from 1.3 to 4.6 g O2/l.hr the optimal concentration of threonine in the medium grow. The biosynthesis of homoserine was less sensitive to the inhibitory effect of excessive threonine than that of lysine. With an increase of the threonine concentration in the medium from 0.25 to 3.0 g/l the ratio homoserine : lysine grew from 1.03 to 5.20 (with the sulphite number being 4.6 g O2/l.hr). This effect was independent of the aeration conditions.  相似文献   

12.
A mutant of Salmonella typhimurium was selected for its spontaneous resistance to the lysine analog, thialysine (S-2-aminoethyl cysteine). This strain, JB585, exhibits a number of pleiotropic properties including a partial growth requirement for threonine, resistance to thiaisoleucine and azaleucine, excretion of lysine and valine, and inhibition of growth by methionine. Genetic studies show that these properties are caused by a single mutation in the thrA gene which encodes the threonine-controlled aspartokinase-homoserine dehydrogenase activities. Enzyme assays demonstrated that the aspartokinase activity is unstable and the threonine-controlled homoserine dehydrogenase activity absent in extracts prepared from the mutant. These results explain the growth inhibition by methionine because the remaining homoserine dehydrogenase isoenzyme would be repressed by methionine, causing a limitation for threonine. The partial growth requirement for threonine during growth in glucose minimal medium may also, by producing an isoleucine limitation, cause derepression of the isoleucine-valine enzymes and provide an explanation for both the valine excretion, and azaleucine and thiaisoleucine resistance. The overproduction of lysine may confer the thialysine resistance.  相似文献   

13.
The effect of threonine technical sources on the homoserine biosynthesis by the threonine auxotroph Brevibacterium flavum 2T when cultivated on sucrose and acetic acid containing media was investigated. Various threonine sources (corn extract and fodder yeast, microbial biomass and soybean meal hydrolyzates) prepared by means of different hydrolyzing agents (acids, enzymes, autolysis) were used. The most effective substrate was protein--vitamin concentrate hydrolyzate, particularly combined with corn extract in the ratio 1: 0,25-0.5 (with respect to the dry weight of the initial material). The homoserine yield was 16.2 g/l on the sucrose containing medium and 18.4 g/l on the acetic acid containing medium which was in agreement with controls. The medium containing pure threonine was used as a control. With other threonine sources (corn extract, protein-vitamin concentrate autolyzate and enzymolyzate, fodder yeast and soybean meal hydrolyzates), the homoserine production was significantly lower, i.e. 40-70% of the control. The content of amino acids (threonine, isoleucine, methionine) in the initial material and their suitability for the homoserine biosynthesis were found to be correlated. The substrates with a high content of threonine (over 3.5%) and a low content of methionine (below 0.5%) proved most effective. The use of the material in which the ratio threonine: methionine was less than 6.0 caused the homoserine biosynthesis to be partially replaced with that of lysine.  相似文献   

14.
Summary The hom-thrB operon (homoserine dehydrogenase/homoserine kinase) and the thrC gene (threonine synthase) of Corynebacterium glutamicum ATCC 13 032 and the hom FBR (homoserine dehydrogenase resistant to feedback inhibition by threonine) alone as well as hom FBR-thrB operon of C. glutamicum DM 368-3 were cloned separately and in combination in the Escherichia coli/C. glutamicum shuttle vector pEK0 and introduced into different corynebacterial strains. All recombinant strains showed 8- to 20-fold higher specific activities of homoserine dehydrogenase, homoserine kinase, and/or threonine synthase compared to the respective host. In wild-type C. glutamicum, amplification of the threonine genes did not result in secretion of threonine. In the lysine producer C. glutamicum DG 52-5 and in the lysine-plus-threonine producer C. glutamicum DM 368-3 overexpression of hom-thrB resulted in a notable shift of carbon flux from lysine to threonine whereas cloning of hom FBR-thrB as well as of hom FBR in C. glutamicum DM 368-3 led to a complete shift towards threonine or towards threonine and its precursor homoserine, respectively. Overexpression of thrC alone or in combination with that of hom FBR and thrB had no effect on threonine or lysine formation in all recombinant strains tested. Offprint requests to: B. J. Eikmanns  相似文献   

15.
We constructed recombinant plasmids carrying the genes coding for the L-threonine biosynthetic enzymes, the hom gene, the hom-thrC genes, and the thrB genes, of a gram-negative obligate methylotroph, Methylobacillus glycogenes, and examined the effects of them on the production of L-threonine from methanol. The hom gene, which encodes the homoserine dehydrogenase, and the hom-thrC genes, containing the gene coding for threonine synthase together with the hom gene, were cloned from a wild-type strain, and the thrB gene encoding the desensitized homoserine kinase was cloned from an L-threonine-producing mutant, ATR80. The recombinant plasmids were transferred into ATR80 and its L-isoleucine auxotroph, A513, by conjugation. Amplification of the genes coding for the L-threonine biosynthetic enzymes elevated the activities of the L-threonine biosynthetic enzymes of the transconjugants 10- to 30-fold over those of the strains containing only vectors. The L-threonine production from methanol in test-tube cultivation was increased about 30% and 40% by the amplification of the hom gene and the hom-thrC gene respectively, and it was slightly increased by that of the thrB gene. The effects of gene amplification were confirmed by the cultivation in 5-1 jar fermentors. The best producer, an A513 transconjugant containing the plasmid carrying the hom-thrC genes, produced 16.3 g/l L-threonine for 72 h.  相似文献   

16.
Activity and regulation of key enzymes of the lysine biosynthetic pathway were investigated inBrevibacterium linens, a natural excretor of lysine, its lysine-overproducing homoserine auxotroph (Hom(-1)) and its auxotrophic and multianalogue-resistant high-yielding mutant (AEC NV 20(r)50). The activity of aspartate kinase (AK) and aspartaldehydate dehydrogenase (AD) was maximum during the mid-exponential phase of growth and decreased therafter. The mutants showed 10 and 20% more activity of AK and AD than the wild-type lysine excretor.B. linens (natural excretor) has a single AK and AD repressed and inhibited bivalently by lysine and threonine. Lysine slightly repressed and inhibited dihydrodipicolinate synthase (DS) and diaminopimelate decarboxylase (DD) of the wild type and of the mutant Hom(-1). The mutant AEC NV 20(r)50 showed DS and DD to be insensitive to lysine inhibition and repression. Persistence of a major part of the maximal activity of these enzymes during the late stationary phase of growth allowed prolonged synthesis and excretion of lysine. Stepwise addition of resistance to the different analogues of lysine in the mutant AEC NV20(r)50 resulted in an increase of enzyme activity and reduced repressibilities of enzymes that contributed to the high yield of lysine.  相似文献   

17.
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for β-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M r of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protein was purified. The cloned gene was used to construct a plasmid containing a hom disruption cassette which was then transformed into S. clavuligerus. A hom mutant of S. clavuligerus was obtained by insertional inactivation via double crossover, and the effect of hom gene disruption on cephamycin C yield was investigated by comparing antibiotic levels in culture broths of this mutant and in the parental strain. Disruption of hom gene resulted in up to 4.3-fold and twofold increases in intracellular free l-lysine concentration and specific cephamycin C production, respectively, during stationary phase in chemically defined medium.  相似文献   

18.
Excised wheat (Triticum aestivum L. var. Maris Freeman) and barley (Hordeum vulgare L. var. Maris Mink) embryos were grown on medium containing both nitrate and ammonium ions. Addition of lysine (1 mM) plus threonine (1 mM) caused a synergistic inhibition of growth measured by length of first leaf or dry weight. The inhibition was specifically relieved by methionine, homocysteine and homoserine. Threonine at 0.2–0.3 mM caused half-maximal inhibition of growth at all lysine concentrations whereas lysine increased the synergistic inhibition up to 3 mM. The inhibition is explained by a model in which lysine acts as a feedback inhibitor of aspartate kinase and threonine of homoserine dehydrogenase. This is compatible with published studies of the enzymes involved. The implications of these findings for using lysine plus threonine as a selection system for lysine-overproducing cereals are discussed.Abbreviations Lys Lysine - Thr Threonine - Met Methionine - Hser Homoserine - Hcys Homocysteine  相似文献   

19.
Carbon destined for lysine synthesis in Corynebacterium glutamicum ATCC 21799 can be diverted toward threonine by overexpression of genes encoding a feedback-insensitive homoserine dehydrogenase (hom(dr)) and homoserine kinase (thrB). We studied the effects of introducing two different threonine dehydratase genes into this threonine-producing system to gauge their effects on isoleucine production. Co-expression of hom(dr), thrB, and ilvA, which encodes a native threonine dehydratase, caused isoleucine to accumulate to a final concentration of 2.2+/-0.2 g l(-1), five-fold more than accumulates in the wild-type strain, and approximately twice as much as accumulates in the strain expressing only hom(dr) and thrB. Comparing these data with previous results, we found that overexpression of the three genes, hom(dr), thrB, and ilvA, in C. glutamicum ATCC 21799 is no better in terms of isoleucine production than the expression of a single gene, tdcB, encoding a catabolic threonine dehydratase from Escherichia coli. Co-expression of hom(dr), thrB, and tdcB, however, caused the concentration of isoleucine to increase 20-fold compared to the wild-type strain, about four times more than the corresponding ilvA-expressing strain. In this system, the apparent yield of isoleucine production was multiplied by a factor of two [2.1 mmol (g dry cell weight)(-1)]. While the balance of excreted metabolites showed that the carbon flow in this strain was completely redirected from the lysine pathway into the isoleucine pathway, it also showed that more pyruvate was diverted into amino acid synthesis.  相似文献   

20.
Aspartokinase fromMicrococcus glutamicus AEC RN-13-6/1 [a homoserine requiring, S-(2-aminoethyl)-L-cysteine resistant, lysine producing strain] was purified 71 fold. The partially purified enzyme was inhibited by L-lysine. L-threonine, L-methionine, L-isoleucine, L-valine and L-phenylalanine activated the enzyme and reversed the inhibition by L-lysine. Aspartokinase activity was not derepressed by growth-limiting concentrations of L-threonine and/or L-methionine. It was not repressed by an excess of L-lysine (20 mM) and/or L-isoleucine (15.3 mM). The degree of activation or inhibition by amino acids was dependant on the composition of the growth medium. This observation is in contrast with the enzyme from the original (non-lysine-producing) strain which was inhibited by lysine or threonine and in a concerted manner by threonine plus lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号