首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of microfilaments and microtubules in cultured cells before and after the addition of cytochalasin B (CB) was studied both by electron microscopy and immunofluorescence microscopy using antibodies specific for actin, tubulin and tropomyosin. CB induces a rapid disorganization of normal microfilament bundles. Star-like patches of actin and tropomyosin are visualized in immunofluorescence microscopy and dense aggregates of condensed microfilaments are seen in electron microscopy. The integrity of the microtubules is not changed by CB treatment. Addition of CB to glycerinated cells, in contrast to normal cells, does not result in the disorganization of microfilament bundles. CB-treated glycerinated models can still contract upon addition of ATP. Thus the CB-induced rearrangement of microfilament bundles occurs only in vivo and not in glycerinated cell contractility models.  相似文献   

2.
Rac and rho: the story behind melanocyte dendrite formation   总被引:3,自引:0,他引:3  
Melanocyte dendrites are hormonally responsive actin and microtubule containing structures whose primary purpose is to transport melanosomes to the dendrite tip. Melanocyte dendrites have been an area of intense interest for melanocyte biologists, but it was not until recently that we began to understand the mechanisms underlying their formation. In contrast with melanogenesis, for which numerous mutations in pigment producing genes and mouse models have been identified, a genetic defect resulting in impaired dendrite formation has not been found. Therefore, much of the insight into melanocyte dendrites has come from electron microscopy or in vitro culture systems of normal human and murine melanocytes as well as melanoma cell lines. The growth factors that regulate the formation of melanocyte dendrites have been thoroughly studied and it is clear that multiple signalling systems are able to stimulate, and in some cases inhibit, dendrite formation. Recent data points to the Rho family of small guanosine triphosphate (GTP)-binding proteins as master regulators of dendrite formation, particularly Rac and Rho. In this review I will summarize the progress scientists have made in understanding the structure, hormonal regulation and molecular mediators of melanocyte dendrite formation.  相似文献   

3.
Leemhuis J  Henle F  Meyer DK 《Peptides》2007,28(9):1700-1705
In neurons from rat hippocampus, VIP induces the elongation of dendrites. In the present study, we have investigated in cultured hippocampal neurons whether VIP changed the actin and tubulin cytoskeleton in dendrites. VIP caused the elongation of dendrites and induced the outgrowth of microtubules, so that they extended up to the tips. In contrast, VIP reduced the F-actin content measured as total pixel after phalloidin staining in dendritic tips. These results suggest that VIP causes dendrite elongation by facilitating the outgrowth of microtubules into the newly formed extensions.  相似文献   

4.
Induction of neurite formation in neuroblastoma cells by dibutyryl cyclic 3':5'-AMP (db-cAMP) or prostaglandin EI (PGE1) was enhanced after enucleation. Cells selected for resistance to db-cAMP were induced to form neurites by db-cAMP or PGE1 only after, but not before enucleation. Inhibition of protein synthesis inhibited neurite induction in nucleated, but not in enucleated cells, and enucleated cells were less sensitive to inhibition of neurite formation by concanavalin A (ConA). Colchicine, vinblastine and cytochalasin B (CB), compounds that interfere with the assembly of microtubules and microfilaments, inhibited induction in both types of cells. It is suggested that enucleation removes a nuclear inhibitor of neurite induction by db-cAMP and PGE1, and that neurite induction in nucleated cells requires that cAMP activates the assembly of microtubules and microfilaments and inactivates the nuclear inhibitor.  相似文献   

5.
Cytoskeletal reorganization, including reconstruction of actin fibers and microtubules, is essential for various biological processes, such as cell migration, proliferation and dendrite formation. We show here that methylophiopogonanone B (MOPB) induces cell morphological change via melanocyte dendrite retraction and stress fiber formation. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation and actin cytoskeletal reorganization, and activated Rho promotes dendrite retraction and stress fiber formation, we studied the effects of MOPB on the small GTPases using normal human epidermal melanocytes and HeLa cells. In in vitro binding assay, MOPB significantly increased GTP-Rho, but not GTP-Rac or GTP-CDC42. Furthermore, a Rho inhibitor, a Rho kinase inhibitor and a small GTPase inhibitor each blocked MOPB-induced stress fiber formation. The effect of MOPB on actin reorganization was blocked in a Rho dominant negative mutant. These results suggest MOPB acts via the Rho signaling pathway, and it may directly or indirectly activate Rho. Quantitative Western blot analysis indicated that MOPB also induced microtubule destabilization and tubulin depolymerization. Thus, MOPB appears to induce Rho activation, resulting in actin cytoskeletal reorganization, including dendrite retraction and stress fiber formation.  相似文献   

6.
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho‐associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24–48 h as visualized by phase contrast microscopy. Staining with FITC‐tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype.  相似文献   

7.
Ionophore (A23187)-mediated calcium influx induced rapid neurite outgrowth in NB2a/d1 cells. This outgrowth was prevented by colchicine but not by cycloheximide, demonstrating a requirement for microtubule assembly but not de novo synthesis. Cytochalasin B induced rapid, colchicine-sensitive outgrowth, indicating that depolymerization of the submembrane actin network may be sufficient to allow neurite outgrowth under conditions which permitted microtubule assembly. Neurites induced by serum-deprivation or calcium influx were rapidly retracted by colchicine unless cytochalasin B was first added, indicating that the actin network may provide the retractile force which mediates neurite retraction following microtubule depolymerization. We conclude that neurite outgrowth can be initiated in NB2a/d1 cells by calcium influx, and may involve alterations in actin and microtubule dynamics.  相似文献   

8.
Melatonin induces pigment granule aggregation in amphibian melanophores. In the studies reported here, we have used fluorescence microscopic techniques to test the hypothesis that such melatonin-induced pigment movement is correlated with alterations in either the actin or tubulin cytoskeletal patterns of cultured Xenopus melanophores. In general, the cytoplasmic domains of the cultured melanophores were flat and thin except in the perinuclear region (especially when the pigment was aggregated). The microtubules and microfilaments were usually found in the same focal plane; however, on occasion, microfilaments were closer to the substratum. Microtubules were arranged in arrays radiating from what are presumed to be cytocenters. A small percentage of the melanophores were very large, had actin-rich circular perimeters and did not respond as rapidly to melatonin treatment as did the other melanophores. Melanophores with either aggregated or dispersed melanosomes had low intensity rhodamine-phalloidin staining of actin filaments compared to nonpigmented cells, whereas the FITC anti-tubulin intensities were comparable in magnitude to that seen in nonpigmented cells. When cells were fixed prior to complete melatonin-induced pigment granule aggregation there was no abrupt diminution in either the tubulin or actin staining at the boundary between pigment granule-rich and pigment granule-poor cytoplasmic domains. Nor could the actin and tubulin patterns in cells with partially aggregated melanosomes be reliably distinguished from those in melanophores in which the melanosomes were either completely dispersed or completely aggregated. These data argue against the hypothesis that melatonin causes consistent large-scale rearrangements of tubulin and actin polymers as it induces pigment aggregation in Xenopus melanophores.  相似文献   

9.
Interactions between the cytoskeleton and cell adhesion molecules are presumed responsible for neurite extension. We have examined the role of microfilaments in neurite outgrowth on the cell adhesion molecules L1, P84, N-CAM, and on laminin. Cerebellar neurons growing on each substrate exhibited differing growth cone morphologies and rates of neurite extension. Growth of neurites in the presence of cytochalasin B (CB) was not inhibited on substrates of L1 or P84 but was markedly inhibited on N-CAM. Neurons on laminin were initially unable to extend neurites in the presence of CB but recovered this ability within 9 h. These studies suggest that neurite outgrowth mediated by different cell adhesion molecules proceeds via involvement of distinct cytoskeletal interactions. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Neurite outgrowth (dendrites and axons) should be a stable, but easily regulated process to enable a neuron to make its appropriate network connections during development. We explore the dynamics of outgrowth in a mathematical continuum model of neurite elongation. The model describes the construction of the internal microtubule cytoskeleton, which results from the production and transport of tubulin dimers and their assembly into microtubules at the growing neurite tip. Tubulin is assumed to be largely synthesised in the cell body from where it is transported by active mechanisms and by diffusion along the neurite. It is argued that this construction process is a fundamental limiting factor in neurite elongation. In the model, elongation is highly stable when tubulin transport is dominated by either active transport or diffusion, but oscillations in length may occur when both active transport and diffusion contribute. Autoregulation of tubulin production can eliminate these oscillations. In all cases a stable steady-state length is reached, provided there is intrinsic decay of tubulin. Small changes in growth parameters, such as the tubulin production rate, can lead to large changes in length. Thus cytoskeleton construction can be both stable and easily regulated, as seems necessary for neurite outgrowth during nervous system development. Action Editor: Upinder Bhalla  相似文献   

11.
Molecular motors and their role in pigmentation.   总被引:6,自引:0,他引:6  
Skin pigmentation is orchestrated through a series of complementary processes. After migration of melanoblasts out of the neural crest to epidermis and hair follicle, these cells mature into melanocytes. Differentiated melanocytes produce melanin in specialized organelles, the melanosomes. Moreover, the cytoplasm of melanocytes branches into extensions, the dendrites. Via the tips of these dendrites they donate their mature melanosomes to the keratinocytes resulting in skin pigmentation. Thus, one essential part of the process of pigmentation is the translocation of melanosomes from their site of origin in the perinuclear cytoplasm towards the dendrite tips. Motor proteins are molecules which use the energy derived from ATP hydrolysis to move along cytoskeletal elements, either actin filaments or microtubules, to transport their cargo, which can be organelles, vesicles or chromosomes. This review describes the different classes of microtubule-based and actin-based motor proteins with their characteristics and functional importance in cell biology and organelle transport. Some of them will be highlighted and several recent studies in mammalian pigment cells indicating their role in pigment granule transport will be discussed. As a result of these data and previous suggestions, a model will be proposed for the possible cooperation of both systems in melanosome movement.  相似文献   

12.
Abstract: The levels and rates of synthesis of actin and myosin in murine neuroblastoma S20 cells have been examined during neurite formation in the absence of serum. Two forms of actin (β, -γ) have been identified in these cells; they have isoelectric points of about 5.43 and 5.45, respectively, which differ from that of murine skeletal muscle actin (5.41). Although the neuroblastoma actins have the same molecular weight as skeletal muscle actin, they can be clearly distinguished from this protein by peptide maps. Actin comprises about 7% of the total protein in these cells and neither the level nor the proportion of the two isoelectric forms change during neurite extension (β: γ:60: 40). Myosin ATPase activity is also similar in morphologically differentiated and undifferentiated cells. The rates of synthesis of actin and myosin relative to total protein synthesis undergo small changes during differentiation. Actin synthesis increases about 30% in the 1st day of induction and falls off to the undifferentiated level by day 4. Myosin synthesis increases by about 30% within 2 days of induction and remains at that level for at least 2 days. In contrast, no change in the relative synthesis of tubulin occurs over 4 days of neurite induction. Thus, neurite extension by these cells is not accompanied by large changes in either the level or rates of synthesis of actin and/or myosin.  相似文献   

13.
Medina PM  Swick LL  Andersen R  Blalock Z  Brenman JE 《Genetics》2006,172(4):2325-2335
Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin::GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin::GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment.  相似文献   

14.
The activity of filopodia and lamellipodia determines the advance, motility, adhesion, and sensory capacity of neuronal growth cones. The shape and dynamics of these highly motile structures originate from the continuous reorganization of the actin cytoskeleton in response to extracellular signals. The small GTPases, Rac1, Rho, and CDC42, regulate the organization of actin filament structures in nonneuronal cells; yet, their role in growth cone motility and neurite outgrowth is poorly understood. We investigated in vitro the function of Rac1 in neurite outgrowth and differentiation by introducing purified recombinant mutants of Rac1 into primary chick embryo motor neurons via trituration. Endogenous Rac1 was expressed in growth cone bodies as well as in the tips and shafts of filopodia, where it often colocalized with actin filament structures. The introduction of constitutively active Rac1 resulted in an increase in rhodamine–phalloidin staining, presumably from an accumulation of actin filaments in growth cones, while dominant negative Rac1 caused a decrease in rhodamine–phalloidin staining. Nevertheless, both Rac1 mutants retarded growth cone advance, and hence attenuated neurite outgrowth and inhibited differentiation of neurites into axons and dendrites on laminin and fibronectin. In contrast, on poly-D -lysine, neither Rac1 mutant affected growth cone advance, neurite outgrowth, or neurite differentiation despite inducing similar changes in the amount of rhodamine–phalloidin staining in growth cones. Our data demonstrate that Rac1 regulates actin filament organization in neuronal growth cones and is pivotal for β1 integrin–mediated growth cone advance, but not for growth on poly-D lysine. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 524–540, 1998  相似文献   

15.
We investigated the effects of calcium removal and calcium ionophores on the behavior and ultrastructure of cultured chick dorsal root ganglia (DRG) neurons to identify possible mechanisms by which calcium might regulate neurite outgrowth. Both calcium removal and the addition of calcium ionophores A23187 or ionomycin blocked outgrowth in previously elongating neurites, although in the case of calcium ionophores, changes in growth cone shape and retraction of neurites were also observed. Treatment with calcium ionophores significantly increased growth cone calcium. The ability of the microtubule stabilizing agent taxol to block A23187-induced neurite retraction and the ability of the actin stabilizing agent phalloidin to reverse both A23187-induced growth cone collapse and neurite retraction suggested that calcium acted on the cytoskeleton. Whole mount electron micrographs revealed an apparent disruption of actin filaments in the periphery (but not filopodia) of growth cones that were exposed to calcium ionophores in medium with normal calcium concentrations. This effect was not seen in cells treated with calcium ionophores in calcium-free medium or cells treated with the monovalent cation ionophore monensin, indicating that these effects were calcium specific. Ultrastructure of Triton X-100 extracted whole mounts further indicated that both microtubules and microfilaments may be more stable or extraction resistant after treatments which lower intracellular calcium. Taken together, the data suggest that calcium may control neurite elongation at least in part by regulating actin filament stability, and support a model for neurite outgrowth involving a balance between assembly and disassembly of the cytoskeleton.  相似文献   

16.
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.  相似文献   

17.
Rapid changes in morphology of PC12D cells, a subline of PC12 cells, in response to various agents were studied in relation to the subsequent outgrowth of neurites. A few minutes after addition of NGF or of dbcAMP, staining of F-actin with rhodamine phalloidin revealed the formation of ruffles around the periphery of cells. Simultaneous relocalization of F-actin to the area of ruffles occurred in response to NGF. A moderate relocalization of F-actin occurred in dbcAMP-treated cells. Other neurite-promoting agents on PC12D cells, such as bFGF, EGF and PMA, also caused ruffling and an identical redistribution of F-actin. The actin bundles then condensed into several dot-like aggregates that subsequently became the growth cones of neurites. When an inhibitor of protein kinase, K-252a, was added, only the NGF-induced morphological change was selectively decreased. By contrast, an inhibitor of protein kinase A, H-89, selectively blocked the dbcAMP-induced change. These are analogous to the effects of those inhibitors on the outgrowth of neurites. These observations indicate that the formation of ruffles with the redistribution of F-actin might be one of the earliest steps in the neurite outgrowth and that the morphological changes might be triggered by the activation of specific protein kinases. Neither cytochalasin B nor colchicine prevented the series of morphological changes. However, processes formed in the presence of cytochalasin B had no filopodium and protrusions formed in the presence of colchicine were shaped like large filopodia. It appears that microtubules and microfilaments may not be absolutely required for the initiation of the rapid morphological changes, but that complete neurites might be formed with contribution by microtubules and by microfilaments.  相似文献   

18.
The present study characterized the receptor‐dependent regulation of dendrite formation of noradrenaline (NA) and dopamine (DA) in cultured neurons obtained from embryonic day 16 rat cerebral cortex. Morphological diversity of cortical dendrites was analyzed on various features: dendrite initiation, dendrite outgrowth, and dendrite branching. Using a combination of immunocytochemical markers of dendrites and GABAergic neurons, we focused on the dendrite morphology of non‐GABAergic neurons. Our results showed that (1) NA inhibited the dendrite branching, (2) β adrenergic receptor (β‐AR) agonist inhibited the dendrite initiation, while promoted the dendrite outgrowth, (3) β1‐AR and β2‐AR were present in all the cultured neurons, and both agonists inhibited the dendrite initiation, while only β1‐AR agonist induced the dendrite branching; (4) DA inhibited the dendrite outgrowth, (5) D1 receptor agonist inhibited the dendrite initiation, while promoted the dendrite branching. In conclusion, this study compared the effects of NA, DA and their receptors and showed that NA and DA regulate different features on the dendrite formation of non‐GABAergic cortical neurons, depending on the receptors. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 370–383, 2013  相似文献   

19.
The acquisition of neuronal type-specific morphogenesis is a central feature of neuronal differentiation and has important consequences for region-specific nervous system functions. Here, we report that the cell type-specific cholesterol profile determines the differential modulation of axon and dendrite outgrowths in hippocampal and cerebral cortical neurons in culture. The extent of axon and dendrite outgrowths is greater and the polarity formation occurs earlier in cortical neurons than in hippocampal neurons. The cholesterol concentrations in total homogenate and the lipid rafts from hippocampal neurons are significantly higher than those from cortical neurons. Cholesterol depletion by beta-cyclodextrin markedly enhanced the neurite outgrowth and accelerated the establishment of neuronal polarity in hippocampal neurons, which were similarly observed in nontreated cortical neurons, whereas cholesterol loading had no effects. In contrast, both depletion and loading of cholesterol decreased the neurite outgrowths in cortical neurons. The stimulation of neurite outgrowth and polarity formation induced by cholesterol depletion was accompanied by an enhanced localization of Fyn, a Src kinase, in the lipid rafts of hippocampal neurons. A concomitant treatment with beta-cyclodextrin and a Src family kinase inhibitor, PP2, specifically blocked axon outgrowth but not dendrite outgrowth (both of which were enhanced by beta-cyclodextrin) in hippocampal neurons, suggesting that axon outgrowth modulated by cholesterol is induced in a Fyn-dependent manner. These results suggest that cellular cholesterol modulates axon and dendrite outgrowths and neuronal polarization under culture conditions and also that the difference in cholesterol profile between hippocampal and cortical neurons underlies the difference in neurite outgrowth between these two types of neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号