首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bands in the ir and Raman spectra of L -valyl-glycyl-glycine (VGG) and VGG-ND have been assigned on the basis of a normal mode analysis of the known parallel-chain β-structure of this tripeptide. Amide I, II, III, and V mode shifts are obtained by the interactions of dipole derivatives in symmetry coordinates, referred to as dipole derivative coupling. These derivatives, obtained from ab initio studies, are also used to calculate ir intensities of amide I, II, and V modes. The agreement between predicted and observed frequencies and intensities is very good, providing confidence in the application of our force fields to the calculation of the vibrational modes of the general parallel-chain β-sheet structure (following paper).  相似文献   

2.
Statistical copolymers were prepared from N-carboxyanhydrides of L -valine and γ-benzyl-L -glutamate in dioxan with triethylamine as an initiator. The copolymerization conversion was determined by ir spectroscopy, the copolymer composition by amino acid analysis, and the molecular weights by light scattering. The monomer reactivity ratios were found to be rVal = 0.14 and rGlu(OBzl) = 6.4. High-molecular-weight copolymers are formed even at low conversions. The content of β-structure in the copolymers was estimated from the ir spectra in copolymerization mixtures. The sequence-length distribution of L -valine and γ-benzyl-L -glutamate copolymers was calculated and its dependence on copolymerization conversion is discussed. Relations between the sequence-length distribution and the content of β-structure were studied. It was found that the content of β-structure in samples with the same composition is different for low- and high-conversion copolymers. The formation of β-structure in copolymers in the copolymerization mixture requires a certain minimal sequence length, which has been found to be about 6 valine units.  相似文献   

3.
Terminally blocked (L-Pro-Aib)n and Aib-(L-Pro-Aib)n sequential oligopeptides are known to form right-handed β-bend ribbon spirals under a variety of experimental conditions. Here we describe the results of a complete CD and ir characterization of this subtype of 310-helical structure. The electronic CD spectra were obtained in solvents of different polarity in the 260-180 nm region. The vibrational CD and Fourier transform ir (FTIR) spectra were measured in deuterochloroform solution in the amide I and amide II (1750-1500 cm?1) regions. The critical chain length for full development of the β-bend ribbon spiral structure is found to be five to six residues. Spectral effects related to concentration-induced stabilization of the structures of the longer peptides were seen in the resolution-enhanced FTIR spectra. Comparison to previous studies of (Aib)n and (Pro)n oligomers indicate that the low frequency of the amide I mode is due to the interaction of secondary and tertiary amide bonds and not to a strong difference in conformation from a regular 310-helix. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
M Rüegg  V Metzger  H Susi 《Biopolymers》1975,14(7):1465-1471
Infrared spectra of myoglobin, ribonuclease, lysozyme, α-chymotrypsin, α-lactalbumin, and β-lactoglobulin A were obtained in deuterium oxide solution in units of absorbance versus wavenumber from 1340 to 1750 cm?1. The spectra were resolved into Gaussian components by means of an iterative computer program. Resolved characteristic absorption peaks for the two infrared active amide I′ components of antiparallel chain-pleated sheets (β-structure) were obtained. The characteristic amide I′ peaks of α-helical regions and apparently unordered regions overlap in D2O solution. Absorptivity values for the resolved β-structure peak around 1630 cm?1 were estimated on the basis of the known structure of ribonuclease, lysozyme, and β-chymotrypsin. The β-structure content of β-lactoglobulin was estimated to be ca. 48% of α-lactalbumin ca. 18%, and of αs-casein close to zero. The results are in general agreement with conclusions drawn from circular dichroism and optical rotatory dispersion studies.  相似文献   

5.
K J Payne  A Veis 《Biopolymers》1988,27(11):1749-1760
The ir spectra of lathyritic rat skin collagen and calf skin gelatin solutions at a variety of temperatures were obtained using Fourier transform ir spectroscopy and a 9-reflection, 2-pass ZnSe prism sample cell. The spectra were then deconvolved (based on Kauppinnen's method) and the behavior of the amide I band at ~ 1650 cm?1 observed in detail. Throughout the temperature range studied (4–50°C), three component absorption peaks within the amide I band (at 1633, 1643, and 1660 cm?1) are common to the spectra irrespective of the degree of triple helix content of the sample. Changes in the relative intensities of these component peaks are, however, conformationally dependent. During denaturation of the triple helix, the dominant 1660-cm?1 component in the native collagen spectrum diminishes and the 1633-cm?1 peak becomes relatively intensified. The inherently strong basicity of the carbonyl group of the proline residues together with the frequent occurrence of this imino acid in the X position of the Gly-X-Y triplet of collagen largely accounts for the ?30-cm?1 shift of the amide I band during denaturation. Temperature and conformationally dependent changes in the fine structure of the amide I band from dilute solutions of collagen can be monitored in a reproducible and quantitative fashion.  相似文献   

6.
The synthetic, zwitterionic bacterial cell wall peptides—D -Gluγ-L-Lys, D -Gluγ-L-Lys-D -Ala, D -Gluγ-L-Lys-D -Ala-D -Ala, and L-Ala-D -Gluγ-L-Lys-D -Ala-D -Ala—have been investigated in the crystalline and aqueous solution state applying ir and Raman spectroscopy. Additionally, aqueous solutions of the tetra- and pentapeptide have been investigated by CD spectroscopic techniques. Apart from the dipeptide, whose spectral features were dominated by end-group vibrations, the corresponding ir and Raman active bands of the crystalline peptides in the amide and skeletal regions were found at similar wave numbers, thus suggesting an analogous three-dimensional structure of these compounds. Dominant amide A, I, II, and III bands near 3275, 1630, 1540, and 1220–1250 cm?1, respectively, in the ir are interpreted in favor of an intermolecularly hydrogen-bonded, β-like structure. The absence of any amide components near 1680–1690 cm?1, together with the presence of strong amide bands near 1630 cm?1, and weak bands near 1660 cm?1 in the ir, which, conversely, were found in the Raman spectra as weak and strong bands, but at corresponding wave numbers, is taken as strong evidence for the presence of the unusual, parallel-arranged β-structure. On the basis of comparative theoretical considerations, a parallel-arranged, “β-type ring” conformation [P. De Santis, S. Morosetti, and R. Rizzo (1974) Macromolecules 7 , 52–58] is hypothesized. The solubilized peptides exhibited distinct similarities with their crystalline counterparts in respect to frequency values and relative intensities of the corresponding ir and Raman-active amide I/I′ components, and of some Raman bands in the skeletal region. This is interpreted in terms of residual short-range order, persisting even in aqueous solution. We concluded that the peptides show a strong propensity to form hydrated, strongly associated aggregates in water. On the basis of amide I/I′ band positions, stable, intramolecular interactions via the amide groups are discarded for the solubilized peptides. Complementarily, the CD data obtained suggest the presence of weakly bent, “open-turn”-like structures for the tetra- and pentapeptide in aqueous solution.  相似文献   

7.
A new deconvolution procedure was applied to the analysis of Fourier transform in spectra of human serum albumin secondary structure in the native state and in states denatured by heat and acid treatment. The deconvolution method is based on the use of the Conjugate Gradient Minimization Algorithm, with the addition of suitable constraints directly obtained by the application to the measured spectrum of the second derivative operator. This method computes central band frequency, bandwidth, and amplitude of the different spectral components of conformation-sensitive amide bands. In the specific case, it was applied to analysis of the amide I band, and the quantitative determination of the different secondary structures (α-helix, β-sheet, β-turns, and random) was attempted for all the samples examined. The precision of the quantitative determination depends on the amounts of these structures present in the protein. The coefficient of variation is <10% for values of amide I component >15%. The accuracy was tested by comparing, by means of linear regression, the results obtained for human serum albumin, hemoglobin, α-chymotrypsin, and cytochrome c, using our method, with those obtained by x-ray crystallography and CD; the results obtained by other vibrational spectroscopic approaches were also compared. The fit standard error between x-ray and ir secondary structure values estimated by our method is 2.5% for α-helix, 7.16% for β structures, and 5.1% for other structures (turns and random coils). Quantitative results are given for the secondary structures (α-helix, turns, and β-strands) present in the native state (turns and β-strands up to now unknown in aqueous solution), together with the percentages of these structures and additional ones (random coils and β-sheets) formed during denaturization. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Wool fibers are comprised of proteins known as α-keratins and have a complex morphological structure. The major components of this structure, the cuticle and cortical cells, differ in the conformations of their peptide chains as well as their amino acid compositions. High quality Fourier transform Raman spectra of cortical and cuticle cells isolated from fine Merino wool fibers have been obtained. Raman spectroscopy has been shown to be sensitive to the differences in both secondary structure and amino acid composition. The cortical cells were found to be higher in α-helical content as compared to the cuticle cells, which had an increased disordered content. Specific information, consistent with amino acid analysis results, regarding cystine, tyrosine, tryptophan, and phenylalanine residues, were obtained for both the cortical and cuticle cells. In addition, the Raman spectra provided information about free thiol groups, amino acids residues with amide group side chains, and residues with protonated carboxyl group side chains. Middle ir transmission spectra of these isolated cells were also obtained. In comparison to the Raman data, the middle ir spectra were found to be not as rich in information. © 1997 John Wiley & Sons, Inc. Biopoly 42: 7–17, 1997  相似文献   

9.
Fourier transform infrared spectroscopy (FTIR) can be used for conformational analysis of peptides in a wide range of environments. Measurements can be performed in aqueous solution, organic solvents, detergent micelles as well as in phospholipid membranes. Information on the secondary structure of peptides can be derived from the analysis of the strong amide I band. Orientation of secondary structural elements within a lipid bilayer matrix can be determined by means of polarized attenuated total reflectance–FTIR spectroscopy. Hydrogen–deuterium exchange can be monitored by the analysis of the, amide II band. This review gives some example of peptide systems studied by FTIR spectroscopy. Studies on alamethicin and α-aminoisobutyric acid containing peptides have shown that FTIR spectroscopy is a sensitive tool for identifying 310-helical structures. Changes in the structure of the magainins upon interaction with charged lipids were detected using FTIR spectroscopy. Tachyplesin is an example of a β-sheet containing membrane active peptide. Polarized ir spectroscopy reveals that the antiparallel β-sheet structures of tachyplesin are oriented parallel to the membrane surface. Synthesis of peptides corresponding to functionally/structurally important regions of large proteins is becoming increasingly popular. FTIR spectroscopy has been used to analyze the structure of synthetic peptides corresponding to the ion-selective pore of the voltage-gated potassium channel. In biomembrane systems these peptides adopt a highly helical structure. Under conditions, where these peptides are aggregated the presence of some intermolecular β-sheet structure can also be detected. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Examination of the secondary structure of proteins by deconvolved FTIR spectra   总被引:70,自引:0,他引:70  
D M Byler  H Susi 《Biopolymers》1986,25(3):469-487
Fourier transform ir (FTIR) spectra of 21 globular proteins have been obtained at 2 cm?1 resolution from 1600 to 1700 cm?1 in deuterium oxide solution. Fourier self-deconvolution was applied to all spectra, revealing that the amide I band of each protein except casein consists of six to nine components. The components are observed at 11 well-defined frequencies, although all proteins do not exhibit components at every characteristic frequency. The root mean square (RMS) deviation of 124 individual values from the 11 average characteristic frequencies is 1.9 cm?1. The observed components are assigned to helical segments, extended beta-segments, unordered segments, and turns. Segments with similar structures do not necessarily exhibit band components with identical frequencies. For instance, the lower frequency beta-structure band can vary within a range of approximately 15 cm?1. The relative areas of the individual components of the deconvolved spectra were determined by a Gauss–Newton, iterative curve-fitting procedure that assumed Gaussian band envelopes for the deconvolved components. The measured areas were used to estimate the percentage of helix and beta-structure for each of 21 globular proteins. The results are in good general agreement with values derived from x-ray data by Levitt and Greer. The RMS deviation between 22 values (alpha- and beta-content of 11 beta-rich proteins measured by both techniques) is 2.5 percentage points; the maximum absolute deviation is 4 percentage points.  相似文献   

11.
Fourier transform infrared transmission spectra have been obtained of the enzyme ribonuclease in both H2O and 2H2O. The resolution of the spectra have been enhanced by Fourier self-deconvolution procedures. The infrared spectrum of ribonuclease changes during exchange of the enzyme's amide hydrogens for deuterium and the exchange has been followed in the amide I and amide II spectral regions. The amide I band shifts towards lower wavenumbers during both the fast and slow phases of hydrogen exchange and the interpretation of these shifts has aided the band assignments. In particular these studies have allowed an assignment to be made for the high frequency component of the β-strand absorption that differs from that proposed previously. This paper represents the first example of the use of deconvoluted Fourier transform infrared spectra in conjunction with hydrogen-deuterium exchange in order to aid in the assignment of a proteins's infrared bands.  相似文献   

12.
M Jackson  H H Mantsch 《Biopolymers》1991,31(10):1205-1212
The structure of valinomycin in a range of organic solvents of varying polarity and in detergent and lipid dispersions has been studied by Fourier transform ir spectroscopy. In solvents of low polarity such as chloroform, ir spectra of valinomycin are fully consistent with the bracelet structure proposed on the basis of nmr spectroscopy, showing a single narrow amide I component attributable to the presence of beta-turns and a single band arising from nonhydrogen-bonded ester C = O groups. K+ complexation results in a downward shift in the amide I band frequency, indicating an increase in the strength of the amide hydrogen bonds, along with a shift to lower frequencies of the ester C = O absorption due to a reduction in electron density in these bonds upon complexation. Identical results were obtained with NH4+, a finding not previously reported. In solvents of both medium (CHCl3/DMSO 3:1) and high (pure DMSO) polarity, we find evidence of significant disruption of the internal hydrogen-bonding network of the peptide and the appearance of a band suggesting the presence of free amide C = O groups. In such solvents, complexation with K+ and NH4+ was not observed. The structure of valinomycin in detergent micelles resembles that in nonpolar organic solvents. However, changes were found in the amide I and ester carbonyl maxima as 2H2O penetrated the micelle which suggest significant interaction between the solvent and peptide. Complexation with K+ was reduced in cationic detergent micelles as a result of a decrease in the effective K+ concentration due to charge repulsion at the micelle surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The solid state secondary structure of myoglobin, RNase A, concanavalin A (Con A), poly(L -lysine), and two linear heterooligomeric peptides were examined by both far-uv CD spectroscopy1 and by ir spectroscopy. The proteins associated from water solution on glass and mica surfaces into noncrystalline, amorphous films, as judged by transmission electron microscopy of carbon-platinum replicas of surface and cross-fractured layer. The association into the solid state induced insignificant changes in the amide CD spectra of all α-helical myoglobin, decreased the molar ellipticity of the α/β RNase A, and increased the molar ellipticity of all-β Con A with no change in the positions of the bands' maxima. High-temperature exposure of the films induced permanent changes in the conformation of all proteins, resulting in less α-helix and more β-sheet structure. The results suggest that the protein α-helices are less stable in films and that the secondary structure may rearrange into β-sheets at high temperature. Two heterooligomeric peptides and poly (L -lysine), all in solution at neutral pH with “random coil” conformation, formed films with variable degrees of their secondary structure in β-sheets or β-turns. The result corresponded to the protein-derived Chou-Fasman amino acid propensities, and depended on both temperature and solvent used. The ir and CD spectra correlations of the peptides in the solid state indicate that the CD spectrum of a “random” structure in films differs from random coil in solution. Formic acid treatment transformed the secondary structure of the protein and peptide films into a stable α-helix or β-sheet conformations. The results indicate that the proteins aggregate into a noncrystalline, glass-like state with preserved secondary structure. The solid state secondary structure may undergo further irreversible transformations induced by heat or solvent. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
An infrared (ir) method to determine the secondary structure of proteins in solution using the amide I region of the spectrum has been devised. The method is based on the circular dichroism (CD) matrix method for secondary structure analysis given by Compton and Johnson (L. A. Compton and W. C. Johnson, 1986, Anal. Biochem. 155, 155-167). The infrared data matrix was constructed from the normalized Fourier transform infrared spectra from 1700 to 1600 cm-1 of 17 commercially available proteins. The secondary structure matrix was constructed from the X-ray data of the seventeen proteins with secondary structure elements of helix, beta-sheet, beta-turn, and other (random). The CD and ir methods were compared by analyzing the proteins of the CD and ir databases as unknowns. Both methods produce similar results compared to structures obtained by X-ray crystallographic means with the CD slightly better for helix conformation, and the ir slightly better for beta-sheet. The relatively good ir analysis for concanavalin A and alpha-chymotrypsin indicate that the ir method is less affected by the presence of aromatic groups. The concentration of the protein and the cell path length need not be known for the ir analysis since the spectra can be normalized to the total ir intensity in the amide I region. The ir spectra for helix, beta-sheet, beta-turn, and other, as extracted from the data-base, agree with the literature band assignments. The ir data matrix and the inverse matrix necessary to analyze unknown proteins are presented.  相似文献   

15.
An ir-absorption and Raman-scattering study, in the solid state, has been carried out on monodispersed, N- and C-protected homooligopeptides (number of residues, n, from 2 to 7) of L -valine, L -isoleucine, and L -phenylalanine. The amide I, II, III, V, and vNH regions have been examined. Some deuterated (ND) samples have been examined to complete the assignments. L -Phenylalanine dipeptide displays spectral characteristics compatible with the parallel β-structure; L -isoleucine and L -valine dipeptides are probably in a distorted structure. A mixture of parallel and antiparallel extended chains cannot be excluded for the peptides with n = 3. In the amide I region the spectra of peptides with n ≥ 4 show the existence of the β-conformation. The problem of chain orientation within the pleated-sheet structure is discussed on the basis of a recent theoretical treatment of vibrational interactions of the amide I mode.  相似文献   

16.
Polarized ir spectra of oriented films of α‐helical poly(l ‐alanine) (α‐PLA) have been obtained as a function of residual solvent dichloroacetic acid (DCA). The amide A, B, II, and V regions exhibit multiple bands whose structure depends on the residual DCA content, and those associated with the αI‐PLA structure have been identified. A calculation of the relevant cubic anharmonic force constants indicates that, contrary to previous assignments, the overtone of amide II(A) is in Fermi resonance with the NH stretch fundamental, whose unperturbed frequency we now find to be at 3314 cm−1, significantly higher than the previously suggested 3279 cm−1. The presence of a structure in addition to the standard αI‐PLA is indicated by our analysis. © 1999 John Wiley & Sons, Inc. Biopoly 49: 195–207, 1999  相似文献   

17.
The solid-state conformation of copolymers of β-benzyl-L -aspartate [L -Asp(OBzl)] with L -leucine (L -Leu), L -alanine (L -Ala), L -valine (L -Val), γ-benzyl-L -glutamate [L -Glu(OBzl)], or ?-carbobenzoxy-L -lysine (Cbz-L -Lys) has been studied by ir spectroscopy and circular dichroism (CD). The ir spectra in the region of the amide I and II bands and in the region of 700–250 cm?1 have been determined. The results from the ir studies are in good agreement with data obtained by CD experiments. Incorporation of the amino acid residues mentioned above into poly[L -Asp(OBzl)] induces a change from the left-handed into the right-handed α-helix. This conformational change for the poly[L -Asp(OBzl)] copolymers was observed in the following composition ranges: L -Leu, 0–15 mol %; L -Ala, 0–32 mol %; L -Val, 0–8 mol %; L -Glu(OBzl), 3–10 mol %; and Cbz-L -Lys, 0–9 mol %.  相似文献   

18.
Fourier transform ir vibrational circular dichroism (VCD) spectra in the amide I′ region of poly(L-lysine) in D2O solutions have confirmed the existence of three distinct conformational states and an unordered conformational state in this homopolypeptide. Characteristic VCD spectra are presented for the right-handed α-helix, the antiparallel β-sheet, an extended helix conformation previously referred to as the so-called “random coil,” and a completely unordered conformation characterized by the absence of any amide I′ VCD. VCD for the antiparallel β-sheet in solution and the unordered chain conformation are presented for the first time. Each of the four different VCD spectra is unique in appearance and lends weight to the view that VCD has the potential to become a sensitive new probe of the secondary structure of proteins in solution.  相似文献   

19.
Using a newly constructed Fourier transform ir (FTIR) based vibrational CD (VCD) instrument, we have found that elimination of the ellipsoidal collection mirror before the detector and its replacement by a lens leads to a significant improvement in the absorption artifact problem often seen previously in FTIR-VCD. Reduction in artifact level brings the FTIR-VCD band shape of the amide 1 band in poly(γ-benzyl-L -glutamate) into better agreement with that found with dispersive instruments. These results indicate that the difference between the spectra obtained with the two methods is not primarily a factor of resolution but is more dependent on artifact level. Thus the previously reported deconvolution of the amide I VCD results and their subsequent interpretation in terms of the helical vs. exciton mechanisms overemphasize weak features in the spectrum. Results based on deconvolution of the absorption spectrum remain valid. Further new data on the amide II and several lower energy transitions that encompass the amide III region show broad single-signed features—but of the opposite sense—in the two regions, implying that their VCD arises through mutual coupling.  相似文献   

20.
Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structure of 5'-nucleotidase from bull seminal plasma (BSP). Spectra of protein in both D2O and H2O were analyzed by deconvolution and second derivative methods in order to observe the overlapping components of the amide I band. The protein, which is made up of two apparently identical subunits and which contains two zinc atoms, was studied in its native form, in the presence of dithiotreitol (DTT) and after removal of the two zinc atoms by means of nitrilotriacetic acid (NTA). Deconvolved and second derivative spectra of amide I band showed that the native protein contains mostly beta-sheet structure with a minor content of alpha-helix. The quantitative analysis of the amide I components was performed by a curve-fitting procedure which revealed 54% beta-sheet, 18% alpha-helix, 22% beta-turns and 6% unordered structure. The second derivative and deconvolved spectra of amide I band showed that no remarkable changes in the secondary structure of 5'-nucleotidase were induced by either DTT or NTA. These results were confirmed by the curve-fitting analysis where little or no changes occurred in the relative content of amide I components when the protein was treated with DTT or with NTA. Major changes, however, were observed in the thermal denaturation behavior of the protein. The native protein showed denaturation at temperatures between 70 and 75 degrees C, while the maximum of denaturation was observed between 65 and 70 degrees C and between 55 and 60 degrees C in the presence of NTA and DTT, respectively. The results obtained indicate that the two separate subunits of the protein have essentially the same secondary structure as that of the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号