首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2-[(18)F]Fluoroethyl azide ([(18)F]FEA) and terminal alkynyl modified propioloyl RGDfK were selected in this study. [(18)F]FEA was prepared by nucleophilic radiofluorination of 2-azidoethyl 4-toluenesulfonate with radiochemical yield of 71 ± 4% (n = 5, decay-corrected). We assessed the various conditions of the CuAAC reaction between [(18)F]FEA and propioloyl RGDfK, which included peptide concentration, reaction time, temperature and catalyst dosage. The (18)F-labeled-RGD peptide ([(18)F]F-RGDfK) could be obtained in 60 min by a two-step radiochemical synthesis route, with total radiochemical yield of 60 ± 2% (n = 3, decay-corrected) through click chemistry. [(18)F]F-RGDfK showed high stability in phosphate buffered saline and new-born calf serum. Micro-PET imaging at 1 h post injection of [(18)F]F-RGDfK showed medium concentration of radioactivity in tumors while much decreased concentration in tumors in the blocking group. These results showed that [(18)F]F-RGDfK obtained by click chemistry maintained the affinity and specificity of the RGDfK peptide to integrin α(v)β(3). This study provided useful information for peptide radiofluorination by using click chemistry.  相似文献   

2.
Li W  Lang L  Niu G  Guo N  Ma Y  Kiesewetter DO  Shen B  Chen X 《Amino acids》2012,43(3):1349-1357
RGD peptides, radiolabeled with (18)F, have been used in the clinic for PET imaging of tumor angiogenesis in cancer patients. RGD peptides are typically labeled using a prosthetic group such as N-succinimidyl 4-[(18)F]-fluorobenzoate ([(18)F]SFB) or 4-nitrophenyl 2-[(18)F]-fluoropropionate ([(18)F]NPFP). However, the complex radiosynthetic procedures have impeded their broad application in clinical studies. We previously radiolabeled proteins and peptides with the prosthetic group, N-succinimidyl 4-[(18)F]-fluoromethylbenzoate ([(18)F]SFMB), which was prepared in a simple one-step procedure. In this study, we labeled a PEGylated cyclic RGD peptide dimer, PEG(3)-E[c(RGDyK)](2) (PRGD2), using [(18)F]SFMB and evaluated for imaging tumor αvβ3 integrin expression with positron emission tomography (PET). [(18)F]SFMB was prepared in one step using [(18)F]fluoride displacement of a nitrobenzenesulfonate leaving group under mild reaction conditions followed by HPLC purification. The (18)F-labeled peptide, [(18)F]FMBPRGD2 was prepared by coupling PRGD2 with [(18)F]SFMB in pH 8.6 borate buffer and purified with HPLC. The direct labeling on BMBPRGD2 was also attempted. A Siemens Inveon PET was used to image the uptake of the [(18)F]FMBPRGD2 into a U87MG xenograft mouse model. [(18)F]FMBPRGD2, was prepared with a 15% overall radiochemical yield (uncorrected) in a total synthesis time of 90?min, which was considerably shorter than the preparation of [(18)F]SFB- and [(18)F]NPFP-labeled RGD peptides. The direct labeling, however, was not successful. High quality microPET images using [(18)F]FMBPRGD2 clearly visualized tumors by 15?min with good target to background ratio. Early tracer accumulation in the bladder suggests fast renal clearance. No obvious bone uptake can be detected even at 4-h time point indicating that fluorine attachment is stable in mice. In conclusion, N-succinimidyl 4-[(18)F]-fluoromethylbenzoate ([(18)F]SFMB) prosthetic group can be a good alternative for labeling RGD peptides to image αvβ3 integrin expression and for labeling other peptides.  相似文献   

3.
As an effort in the development of more flexible (18)F-labeling chemistry, we report herein on the use of the Cu(I)-catalyzed Huisgen cycloaddition, also known as the "click reaction", to form (18)F-labeled 1,2,3-triazoles. Nucleophilic fluorination of 2-azidoethyl-4-toluenesulfonate followed by distillation provided 2-[(18)F]fluoroethylazide in 55% radiochemical yield (decay-corrected). 2-[(18)F]fluoroethylazide was reacted with a small library of terminal alkynes in the presence of excess Cu(2+)/ascorbate or copper powder. The most reactive alkyne, N-benzylpropynamide provided nearly quantitative incorporation of 2-[(18)F]fluoroethylazide after 15 min at ambient temperature, whereas the majority of the alkyne substrates provided excellent yields of the corresponding (18)F-labeled 1,2,3-triazoles following heating to 80 degrees C. Using the method described, a model peptide was obtained in 92.3 +/- 0.3% (n = 3) radiochemical yield (decay-corrected) after purification by semipreparative HPLC.  相似文献   

4.
2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG) as the most important PET radiotracer is available in almost every PET center. However, there are only very few examples using [(18)F]FDG as a building block for the synthesis of (18)F-labeled compounds. The present study describes the use of [(18)F]FDG as a building block for the synthesis of (18)F-labeled peptides and proteins. [(18)F]FDG was converted into [(18)F]FDG-maleimidehexyloxime ([(18)F]FDG-MHO), a novel [(18)F]FDG-based prosthetic group for the mild and thiol group-specific (18)F labeling of peptides and proteins. The reaction was performed at 100 degrees C for 15 min in a sealed vial containing [(18)F]FDG and N-(6-aminoxy-hexyl)maleimide in 80% ethanol. [(18)F]FDG-MHO was obtained in 45-69% radiochemical yield (based upon [(18)F]FDG) after HPLC purification in a total synthesis time of 45 min. Chemoselecetive conjugation of [(18)F]FDG-MHO to thiol groups was investigated by the reaction with the tripeptide glutathione (GSH) and the single cysteine containing protein annexin A5 (anxA5). Radiolabeled annexin A5 ([(18)F]FDG-MHO-anxA5) was obtained in 43-58% radiochemical yield (based upon [(18)F]FDG-MHO, n = 6), and [(18)F]FDG-MHO-anxA5 was used for a pilot small animal PET study to assess in vivo biodistribution and kinetics in a HT-29 murine xenograft model.  相似文献   

5.
An efficient method based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine has been developed for (18)F-labeling of N-terminal cysteine-bearing peptides and proteins. An (18)F-labeled dimeric cRGD ([(18)F]CBTRGD(2)) has been synthesized with an excellent radiochemical yield (92% based on radio-HPLC conversion, 80% decay-corrected, and isolated yield) and radiochemical purity (>99%) under mild conditions using (18)F-CBT, and shown good in vivo tumor targeting efficiency for PET imaging. The labeling strategy was also applied to the site-specific (18)F-labeling of a protein, Renilla lucifierase (RLuc8) with a cysteine residue at its N-terminus. The protein labeling was achieved with 12% of decay-corrected radiochemical yield and more than 99% radiochemical purity. This strategy should provide a general approach for efficient and site-specific (18)F-labeling of various peptides and proteins for in vivo molecular imaging applications.  相似文献   

6.
N-Terminally azido-modified peptides were labeled with the novel prosthetic labeling synthon [(18)F]azadibenzocyclooctyne ([(18)F]ADIBO) using copper-free azide-alkyne [3+2]-dipolar cycloaddition in high radiochemical yields (RCYs). (18)F-Labeled [(18)F]ADIBO was prepared by nucleophilic substitution of the corresponding tosylate in 21% overall RCY (EOB) in a fully automated synthesis unit within 55 min. [(18)F]ADIBO was incubated with azide-containing peptides at room temperature in the absence of toxic metal catalysts and the formation of the triazole conjugate was confirmed. Finally, the azide-alkyne [3+2]-dipolar cycloaddition was shown to proceed with 95% radiochemical yield in ethanol within 30 min, allowing for a development of a kit-like peptide labeling approach with [(18)F]ADIBO.  相似文献   

7.
FPyME (1-[3-(2-fluoropyridin-3-yloxy)propyl]pyrrole-2,5-dione) was designed as a [(18)F]fluoropyridine-based maleimide reagent for the prosthetic labeling of peptides and proteins via selective conjugation with a thiol (sulfhydryl) function. Its pyridinyl moiety carries the radioactive halogen (fluorine-18) which can be efficiently incorporated via a nucleophilic heteroaromatic substitution, and its maleimido function ensures the efficient alkylation of a free thiol function as borne by cysteine residues. [(18)F]FPyME (HPLC-purified) was prepared in 17-20% non-decay-corrected yield, based on starting [(18)F]fluoride, in 110 min using a three-step radiochemical pathway. The developed procedure involves (1) a high-yield nucleophilic heteroaromatic ortho-radiofluorination on [3-(3-tert-butoxycarbonylaminopropoxy)pyridin-2-yl]trimethylammonium trifluoromethanesulfonate as the fluorine-18 incorporation step, followed by (2) rapid and quantitative TFA-induced removal of the N-Boc-protective group and (3) optimized maleimide formation using N-methoxycarbonylmaleimide. Typically, 4.8-6.7 GBq (130-180 mCi) of radiochemically pure [(18)F]FPyME ([(18)F]-1) could be obtained after semipreparative HPLC in 110 min starting from a cyclotron production batch of 33.3 GBq (900 mCi) of [(18)F]fluoride (overall radiochemical yields, based on starting [(18)F]fluoride: 28-37% decay-corrected). [(18)F]FPyME ([(18)F]-1) was first conjugated with a small model hexapeptide ((N-Ac)KAAAAC), confirming the excellent chemoselectivity of the coupling reaction (CH(2)SH versus CH(2)NH(2)) and then conjugated with two 8-kDa proteins of interest, currently being developed as tumor imaging agents (c-AFIM-0 and c-STxB). Conjugation was achieved in high yields (60-70%, isolated and non-decay-corrected) and used optimized, short-time reaction conditions (a 1/9 (v/v) mixture of DMSO and 0.05 M aq Tris NaCl buffer (pH 7.4) or 0.1 M aq PBS (pH 8), at room temperature for 10 min) and purification conditions (a gel filtration using a Sephadex NAP-10 cartridge or a SuperDex Peptide HR 10/30 column), both compatible with the chemical stability of the proteins and the relatively short half-life of the radioisotope concerned. The whole radiosynthetic procedure, including the preparation of the fluorine-18-labeled reagent, the conjugation with the protein and the final purification took 130-140 min. [(18)F]FPyME ([(18)F]-1) represents a new, valuable, thiol-selective, fluorine-18-labeled reagent for the prosthetic labeling with fluorine-18 of peptides and proteins. Because of its excellent chemoselectivity, [(18)F]FPyME offers an interesting alternative to the use of the nonselective carboxylate and amine-reactive [(18)F]reagents and can therefore advantageously be used for the design and development of new peptide- and protein-based radiopharmaceuticals for PET.  相似文献   

8.
Achieving high-yielding, robust, and reproducible chemistry is a prerequisite for the (18)F-labeling of peptides for quantitative receptor imaging using positron emission tomography (PET). In this study, we extend the toolbox of oxime chemistry to include the novel prosthetic groups [(18)F]-(2-{2-[2-(2-fluoroethoxy)ethoxy]ethoxy}ethoxy)acetaldehyde, [(18)F]5, and [(18)F]-4-(3-fluoropropoxy)benzaldehyde, [(18)F]9, in addition to the widely used 4-[(18)F]fluorobenzaldehyde, [(18)F]12. The three (18)F-aldehydes were conjugated to the same aminooxy-bearing RGD peptide and the effect of the prosthetic group on biodistribution and tumor uptake studied in mice. The peptide conjugate [(18)F]7 was found to possess superior in vivo pharmacokinetics with higher tumor to blood, tumor to liver, tumor to muscle, and tumor to lung ratios than either [(18)F]10 or [(18)F]13. The radioactivity from the [(18)F]7 conjugate excreted more extensively through the kidney route with 79%id passing through the urine and bladder at the 2 h time point compared to around 55%id for the more hydrophobic conjugates [(18)F]10 and [(18)F]13. The chemical nature of a prosthetic group can be employed to tailor the overall biodistribution profile of the radiotracer. In this example, the hydrophilic nature of the ethylene glycol containing prosthetic group [(18)F]5 clearly influences the overall excretion pattern for the RGD peptide conjugate.  相似文献   

9.
We have developed a novel F-18 prosthetic ligand named fluoro-PEG-benzaldehyde (FPBA) 1. [(18)F]-FPBA 1 is formed in situ from its radiolabeled precursor [(18)F]6. Compound 6 is efficiently synthesized in four steps starting from commercially available 6-bromo-3-pyridine carbaldehyde 2. [(18)F]-FPBA was evaluated as a prosthetic ligand to radiolabel three cyclic peptides bearing an aminooxy functional group at the N-terminus position. Acetal [(18)F]6 is purified by either solid-phase extraction (SPE) or reverse-phase HPLC with the overall radiochemical yields (RCY) and radiochemical purity (RCP) in very close agreement. The SPE purification process has the advantage of shorter reaction times (71-87 min for entire reaction sequence), while the use of the reverse-phase HPLC purification process allows the use of up to fifty times less of the expensive synthetic peptides (~ 50 nmol) in the oxime coupling reaction. We have demonstrated an efficient methodology in the production of [(18)F]-FPBA 1 and demonstrated its use as a prosthetic ligand for the labeling of peptides possessing an aminooxy functional group.  相似文献   

10.
A new heterobifunctional linker containing an aldehyde-reactive aminooxy group and a thiol-reactive maleimide group, namely N-[4-(aminooxy)butyl]maleimide, was synthesized as a stable HCl salt by O-alkylation of either N-hydroxyphthalimide or N-(4-monomethoxytrityl)hydroxylamine, followed by N-alkylation of maleimide, in an overall yield of 18% (seven steps) or 29% (five steps), respectively. This heterobifunctional linker allowed a simple and efficient synthesis of a maleimide-containing thiol-reactive (18)F-labeling agent. Thus, N-[4-[(4-[(18)F]fluorobenzylidene)aminooxy]butyl]maleimide (specific activity: approximately 3000 Ci/mmol at end of synthesis) was synthesized in two steps involving the preparation of 4-[(18)F]fluorobenzaldehyde, followed by its aminooxy-aldehyde coupling reaction to the heterobifunctional linker, with an overall radiochemical yield of approximately 35% (decay corrected) within approximately 60 min from end of bombardment. Initial (18)F-labeling experiments were carried out using a thiol-containing tripeptide glutathione (GSH) and a 5'-thiol-functionalized oligodeoxynucleotide (5'-S-ODN) in phosphate-buffered saline (PBS, pH 7.5). After standing at room temperature for 10 min, the (18)F-labeled GSH and 5'-S-ODN were obtained in (18)F-labeling yields of approximately 70% and approximately 5% (decay-corrected), respectively. The heterobifunctional linker is easy to synthesize and provides a facile access to the maleimide-containing thiol-reactive (18)F-labeling agent, which could be advantageously employed in the development of (18)F-labeled biomomolecules for use with positron emission tomography.  相似文献   

11.
Based on the recently highlighted potential of nucleophilic heteroaromatic ortho-radiofluorinations in the preparation of fluorine-18-labeled radiotracers and radiopharmaceuticals for PET, a [(18)F]fluoropyridine-based bromoacetamide reagent has been prepared and used in prosthetic group introduction for the labeling of oligonucleotides. [(18)F]FPyBrA (2-bromo-N-[3-(2-[(18)F]fluoropyridin-3-yloxy)propyl]acetamide) was designed as a radiochemically feasible reagent, its pyridinyl moiety both carrying the radioactive halogen (fluorine-18) and allowing its efficient incorporation via a nucleophilic heteroaromatic substitution, and its 2-bromoacetamide function, ensuring the efficient alkylation of a phosphorothioate monoester group born at the 3'- or 5'-end of single-stranded oligonucleotides. [(18)F]FPyBrA (HPLC-purified) was efficiently prepared in 18-20% non-decay-corrected yield (based on starting [(18)F]fluoride) using a three-step radiochemical pathway in 80-85 min. The developed procedure involves (1) a high-yield nucleophilic heteroaromatic ortho-radiofluorination as the fluorine-18 incorporation-step (70-85% radiochemical yield) and uses [3-(3-tert-butoxycarbonylaminopropoxy)pyridin-2-yl]trimethylammonium trifluoromethanesulfonate as precursor for labeling, followed by (2) rapid and quantitative TFA-removal of the N-Boc-protective group and (3) condensation with 2-bromoacetyl bromide (45-65% radiochemical yield). Typically, 3.3-3.7 GBq (90-100 mCi) of HPLC-purified [(18)F]FPyBrA could be obtained in 80-85 min, starting from 18.5 GBq (500 mCi) of a cyclotron production batch of [(18)F]fluoride. [(18)F]FPyBrA was regioselectively conjugated with 9-mer and 18-mer single-stranded oligonucleotides, provided with a phosphorothioate monoester group at their 3'-end. Both natural phosphodiester DNAs and in vivo-stable 2'-methoxy and -fluoro-modified RNAs were used. Conjugation uses optimized, short-time reaction conditions (MeOH/0.1 M PBS pH 7.4, 15 min, 120 degrees C), both compatible with the chemical stability of the oligonucleotides (ONs) and the half-life of fluorine-18. Conjugated [(18)F]ONs were finally purified by RP-HPLC and desalted using a Sephadex NAP-10 column. The whole radiosynthetic procedure, including the preparation of the fluorine-18-labeled reagent, the conjugation with the oligonucleotide, and the HPLC purification and formulation lasted 140-160 min. [(18)F]FPyBrA represents a valuable alternative to the already reported N-(4-[(18)F]fluorobenzyl)-2-bromoacetamide for the design and development of oligonucleotide-based radiopharmaceuticals for PET.  相似文献   

12.
A novel fluorine-18 prosthetic ligand, 5-(1,3-dioxolan-2-yl)-2-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)pyridine [(18)F]2, has been synthesized. The prosthetic ligand is formed in high radiochemical yield (rcy = 71 ± 2%, n = 3) with excellent radiochemical purity (rcp = 99 ± 1%, n = 3) in a short reaction time (10 min). [(18)F]2 is a small, neutral, organic complex, easily synthesized in four steps from a readily available starting material. It can be anchored onto a target molecule containing an aminooxy functional group under acidic conditions by way of an oxime bond. We report herein two examples [(18)F]23 and [(18)F]24, potential imaging agents for β-amyloid plaques, which were labeled with this prosthetic group. This approach could be used for labeling proteins and peptides containing an aminooxy group. Biodistribution in male ICR mice for both oxime labeled complexes [(18)F]23 and [(18)F]24 were compared to that of the known β-amyloid plaque indicator, [(18)F]-AV-45, florbetapir 1. Oximes [(18)F]23 and [(18)F]24 are larger in size and therefore should reduce the blood-brain barrier (BBB) penetration. The brain uptake for oxime [(18)F]23 appeared to be reduced, but still retained some capability to cross the BBB. Oxime [(18)F]24 showed promising results after 2 min post injection (0.48% dose/gram); however, the uptake increased after 30 min post injection (0.92% dose/gram) suggesting an in vivo decomposition/metabolism of compound [(18)F]24. We have demonstrated a general protocol for the fluoride-18 labeling with a new prosthetic ligand [(18)F]2 that is tolerant toward several functional groups and is formed via chemoselective oxime coupling.  相似文献   

13.
The folate receptor (FR) is upregulated in various cancer types (FR-α isoform) and in activated macrophages (FR-β isoform) which are involved in inflammatory and autoimmune diseases, but its expression in healthy tissues and organs is highly restricted to only a few sites (e.g kidneys). Therefore, the FR is a promising target for imaging and therapy of cancer and inflammation using folate-based radiopharmaceuticals. Herein, we report the synthesis and evaluation of a novel folic acid conjugate with improved properties suitable for positron emission tomography (PET). [(18)F]-fluoro-deoxy-glucose folate ([(18)F]3) was synthesized based on the click chemistry approach using 2-deoxy-2-[(18)F]fluoroglucopyranosyl azide and a folate alkyne derivative. The novel radiotracer [(18)F]3 was produced in good radiochemical yields (25% d.c.) and high specific radioactivity (90 GBq/μmol). Compared to previously published (18)F-folic acid derivatives, an increase in hydrophilicity was achieved by using a glucose entity as a prosthetic group. Biodistribution and PET imaging studies in KB tumor-bearing mice showed a high and specific uptake of the radiotracer in FR-positive tumors (10.03 ± 1.12%ID/g, 60 min p.i.) and kidneys (42.94 ± 2.04%ID/g, 60 min p.i.). FR-unspecific accumulation of radioactivity was only found in the liver (9.49 ± 1.13%ID/g, 60 min p.i.) and gallbladder (17.59 ± 7.22%ID/g, 60 min p.i.). No radiometabolites were detected in blood, urine, and liver tissue up to 30 min after injection of [(18)F]3. [(18)F]-fluoro-deoxy-glucose-folate ([(18)F]3) is thus a promising PET radioligand for imaging FR-positive tumors.  相似文献   

14.
The 2-[(18)F]fluoropropionic (2-[(18)F]FPA) acid is used as a prosthetic group for radiolabeling proteins and peptides for targeted imaging using positron emission tomography (PET). Radiolabeling of compounds with more than one acylable functional group can lead to complex mixtures of products; however, peptides can be labeled regioselectively on the solid phase. We investigated the use of a solid-phase approach for the preparation of 2-[(18)F]fluoropropionyl peptides. [(18)F]FPA was prepared and conjugated to the peptides attached to the solid phase support. The (18)F-labeled peptides were obtained in 175 min with decay corrected yields of 10% (related to [(18)F]fluoride) and with a purity of 76-99% prior HPLC purification. The suitability of various coupling reagents and solid supports were tested for radiolabeling of several peptides of various lengths.  相似文献   

15.
3,4,5-Tri-O-acetyl-2-[18F]fluoro-2-deoxy-d-glucopyranosyl 1-phenylthiosulfonate (Ac3-[18F]FGlc-PTS) was developed as a thiol-reactive labeling reagent for the site-specific 18F-glycosylation of peptides. Taking advantage of highly accessible 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranose, a three-step radiochemical pathway was investigated and optimized, providing Ac3-[18F]FGlc-PTS in a radiochemical yield of about 33% in 90 min (decay-corrected and based on starting [18F]fluoride). Ac3-[18F]FGlc-PTS was reacted with the model pentapeptide CAKAY, confirming chemoselectivity and excellent conjugation yields of >90% under mild reaction conditions. The optimized method was adopted to the 18F-glycosylation of the alphavbeta3-affine peptide c(RGDfC), achieving high conjugation yields (95%, decay-corrected). The alphavbeta3 binding affinity of the glycosylated c(RGDfC) remained uninfluenced as determined by competition binding studies versus 125I-echistatin using both isolated alphavbeta3 and human umbilical vein endothelial cells (Ki = 68 +/- 10 nM (alphavbeta3) versus Ki = 77 +/- 4 nM (HUVEC)). The whole radiosynthetic procedure, including the preparation of the 18F-glycosylating reagent Ac3-[18F]FGlc-PTS, peptide ligation, and final HPLC purification, provided a decay-uncorrected radiochemical yield of 13% after a total synthesis time of 130 min. Ac3-[18F]FGlc-PTS represents a novel 18F-labeling reagent for the mild chemoselective 18F-glycosylation of peptides indicating its potential for the design and development of 18F-labeled bioactive S-glycopeptides suitable to study their pharmacokinetics in vivo by positron emission tomography (PET).  相似文献   

16.
Efficient methodologies for the radiolabeling of peptides with [(18)F]fluoride are a prerequisite to enabling commercialization of peptide-containing radiotracers for positron emission tomography (PET) imaging. It was the purpose of this study to investigate a novel chemoselective ligation reaction comprising conjugation of an [(18)F]-N-methylaminooxy-containing prosthetic group to a functionalized peptide. Twelve derivatives of general formula R1-CO-NH-Lys-Gly-Phe-Gly-Lys-OH were synthesized where R1 was selected from a short list of moieties anticipated to be reactive toward the N-methylaminooxy group. Conjugation reactions were initially carried out with nonradioactive precursors to assess, in a qualitative manner, their general suitability for PET chemistry with only the most promising pairings progressing to full radiochemical assessment. Best results were obtained for the ligation of O-[2-(2-[(18)F]fluoroethoxy)ethyl]-N-methyl-N-hydroxylamine 18 to the maleimidopropionyl-Lys-Gly-Phe-Gly-Lys-OH precursor 10 in acetate buffer (pH 5) after 1 h at 70 degrees C. The non-decay-corrected isolated yield was calculated to be 8.5%. The most encouraging result was observed with the combination 18 and 4-(2-nitrovinyl)benzoyl-Lys-Gly-Phe-Gly-Lys-OH, 9, where the conjugation reaction proceeded rapidly to completion at 30 degrees C after only 5 min. The corresponding non-decay-corrected radiochemical yield for the isolated (18)F-labeled product 27 was 12%. The preliminary results from this study demonstrate the considerable potential of this novel strategy for the radiolabeling of peptides.  相似文献   

17.
The development of RGD-based antagonist of αvβ3 integrin receptor has enhanced the interest in PET probes to image this receptor for the early detection of cancer, to monitor the disease progression and the response to therapy. In this work, a novel prosthetic group (N-(4-fluorophenyl)pent-4-ynamide or FPPA) for the 18F-labeling of an αvβ3 selective RGD-peptide was successfully prepared. [18F]FPPA was obtained in three steps with a radiochemical yield of 44% (decay corrected). Conjugation to c(RGDfK(N3)) by the Cu(II) catalyzed Huisgen azido alkyne cycloaddition provided the [18F]FPPA-c(RGDfK) with a radiochemical yield of 29% (decay corrected), in an overall synthesis time of 140 min.  相似文献   

18.
N-[(18)F]Fluoroethyl-4-piperidyl acetate ([(18)F]FEtP4A) was synthesized and evaluated as a PET tracer for imaging brain acetylcholinesterase (AchE) in vivo. [(18)F]FEtP4A was previously prepared by reacting 4-piperidyl acetate (P4A) with 2-[(18)F]fluoroethyl bromide ([(18)F]FEtBr) at 130 degrees C for 30 min in 37% radiochemical yield using an automated synthetic system. In this work, [(18)F]FEtP4A was synthesized by reacting P4A with 2-[(18)F]fluoroethyl iodide ([(18)F]FEtI) or 2-[(18)F]fluoroethyl triflate ([(18)F]FEtOTf in improved radiochemical yields, compared with [(18)F]FEtBr under the corresponding condition. Ex vivo autoradiogram of rat brain and PET summation image of monkey brain after iv injection of [(18)F]FEtP4A displayed a high radioactivity in the striatum, a region with the highest AchE activity in the brain. Moreover, the distribution pattern of (18)F radioactivity was consistent with that of AchE in the brain: striatum>frontal cortex>cerebellum. In the rat and monkey plasma, two radioactive metabolites were detected. However, their presence might not preclude the imaging studies for AchE in the brain, because they were too hydrophilic to pass the blood-brain barrier and to enter the brain. In the rat brain, only [(18)F]fluoroethyl-4-piperidinol ([(18)F]FEtP4OH) was detected at 30 min postinjection. The hydrolytic [(18)F]FEtP4OH displayed a slow washout and a long retention in the monkey brain until the PET experiment (120 min). Although [(18)F]FEtP4A is a potential PET tracer for imaging AchE in vivo, its lower hydrolytic rate and lower specificity for AchE than those of [(11)C]MP4A may limit its usefulness for the quantitative measurement for AchE in the primate brain.  相似文献   

19.
N-Succinimidyl 3-(di-tert-butyl[(18)F]fluorosilyl)benzoate ([(18)F]SiFB), a novel synthon for one-step labeling of proteins, was synthesized via a simple (18)F-(19)F isotopic exchange. A new labeling technique that circumvents the cleavage of the highly reactive active ester moiety under regular basic (18)F-labeling conditions was established. In order to synthesize high radioactivity amounts of [(18)F]SiFB, it was crucial to partially neutralize the potassium oxalate/hydroxide that was used to elute (18)F(-) from the QMA cartridge with oxalic acid to prevent decomposition of the active ester moiety. Purification of [(18)F]SiFB was performed by simple solid-phase extraction, which avoided time-consuming HPLC and yielded high specific activities of at least 525 Ci/mmol and radiochemical yields of 40-56%. In addition to conventional azeotropic drying of (18)F(-) in the presence of [K(+)?2.2.2.]C(2)O(4), a strong anion-exchange (SAX) cartridge was used to prepare anhydrous (18)F(-) for nucleophilic radio-fluorination omitting the vacuum assisted drying of (18)F(-). Using a lyophilized mixture of [K(+)?2.2.2.]OH resolubilized in acetonitrile, the (18)F(-) was eluted from the SAX cartridge and used directly for the [(18)F]SiFB synthesis. [(18)F]SiFB was applied to the labeling of various proteins in likeness to the most commonly used labeling synthon in protein labeling, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). Rat serum albumin (RSA), apo-transferrin, a β-cell-specific single chain antibody, and erythropoietin were successfully labeled with [(18)F]SiFB in good radiochemical yields between 19% and 36%. [(18)F]SiFB- and [(18)F]SFB-derivatized RSA were directly compared as blood pool imaging agents in healthy rats using small animal positron emission tomography. Both compounds demonstrated identical biodistributions in healthy rats, accurately visualizing the blood pool with PET.  相似文献   

20.
[(18)F]Fluoroethylcholine has been recently introduced as a promising (18)F-labelled analogue of [(11)C]choline which had been previously described as a tracer for metabolic cancer imaging with positron emission tomography (PET). Due to the practical advantages of using the longer-lived radioisotope (18)F (t(1/2)=110 min), offering the opportunity of a more widespread clinical application, we established a reliable, fully automated synthesis for its production using a modified, commercially available module. [(18)F]Fluoroethylcholine was prepared from N,N-dimethylaminoethanol by iodide catalyzed alkylation with 1-[(18)F]fluoro-2-tosylethane as alkylating agent, resulting in a total radiochemical yield of 30+/-6% after a synthesis time of 50 min. The specific activity of [(18)F]fluoroethylcholine was >55 GBq/micromol and the radiochemical purity 95-99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号