首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.  相似文献   

2.
Previous studies have implicated a role of heterotrimeric Gα(i) proteins in lipopolysaccharide (LPS)-induced inflammatory responses. We hypothesized that Toll-like receptor (TLR) signaling regulates Gα(i) proteins, which are anti-inflammatory in endotoxemia and polymicrobial sepsis. RAW 264.7 cells were stimulated with LPS and the Gα(i)-GTP protein complex was immunoprecipitated with a Gα(i) protein activation assay. In subsequent in vivo studies, the Gα(i) protein inhibitor pertussis toxin (PTx) or G(i) protein agonist mastoparan (MP-7) were administrated prior to endotoxemia. LPS-induced pro-inflammatory cytokines and mortality were determined. To examine the role of Gα(i2) in sepsis, Gα(i2) (-/-) and wildtype (WT) mice were subjected to cecal ligation and puncture (CLP) and monitored every 24 h for 120 h. Other mice were sacrificed 24 h after CLP. Peritoneal fluid, blood, and tissue samples were collected. Plasma pro-inflammatory cytokine production, bacterial load in peritoneal fluid, blood and lung tissue, myeloperoxidase (MPO) activity in lung and liver and different immune cell populations in spleen were studied. We found that Gα(i) proteins are rapidly activated by LPS followed by rapid inactivation. These studies provide the first direct evidence that Gα(i) proteins are modulated by TLR signaling. In following studies, PTx augmented LPS-induced plasma TNFα, IL-6, whereas MP-7 suppressed LPS-induced TNFα and decreased LPS-induced mortality. In sepsis studies, the survival rate post-CLP was significantly decreased in the Gα(i2) (-/-) mice compared to WT mice. CLP-induced plasma TNFα, IL-6, bacterial load in peritoneal fluid, blood and lung tissue and lung and liver MPO activity were significantly increased in Gα(i2) (-/-) compared to WT mice. Gα(i2) (-/-) mice also exhibited increased Th1 and Th2 responses compared to WT mice. Taken together, Gα(i) proteins are activated by LPS and negatively regulate endotoxemia and sepsis. Understanding the role of Gα(i2) protein in regulation of the inflammatory response in sepsis may provide novel targets for treatment of sepsis.  相似文献   

3.
Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.  相似文献   

4.
Septic shock is the most common cause of death in intensive care units and no effective treatment is available at present. Lipopolysaccharide (LPS) is the primary mediator of Gram-negative sepsis by inducing the production of macrophage-derived cytokines. Previously, we showed that apolipoprotein E (apoE), an established modulator of lipid metabolism, can bind LPS, thereby redirecting LPS from macrophages to hepatocytes in vivo. We now report that intravenously administered LPS strongly increases the serum levels of apoE. In addition, apoE can prevent the LPS-induced production of cytokines and subsequent death in rodents. Finally, apoE-deficient mice show a significantly higher sensitivity toward LPS than control wild-type mice. These findings indicate that apoE may have a physiological role in the protection against sepsis, and recombinant apoE may be used therapeutically to protect against LPS-induced endotoxemia.  相似文献   

5.
Obesity is associated with elevated levels of IL-6. High IL-6 is prognostic of mortality in sepsis, while controversial data link obesity to sepsis outcome. We used Lean and diet-induced obese (DIO) WT and IL-6 KO mice to investigate the interaction between obesity and IL-6 in endotoxemia. Circulating levels of IL-6 were significantly higher in WT DIO versus WT Lean mice receiving LPS (2.5 μg/mouse, ip). Obesity lead to greater weight loss in response to LPS, with IL-6 deficiency being partially protective. Plasma TNFα, IFNγ, Galectin-3 and leptin were significantly elevated in response to LPS and were each differentially affected by obesity and/or IL-6 deficiency. Plasma Galectin-1 and adiponectin were significantly suppressed by LPS, with obesity and IL-6 deficiency modulating the response. However, LPS comparably increased IL-10 levels in each group. Leukopenia with relative neutrophilia and thrombocytopenia developed in each group after injection of LPS, with obesity and genotype affecting the kinetics, but not the magnitude, of the response. Hepatic induction of the acute-phase protein SAA by LPS was not affected by obesity or IL-6 deficiency, although baseline levels were highest in WT DIO mice. Injection of LPS significantly increased hepatic mRNA expression of PAI-1 in Lean WT and Lean KO mice, while it suppressed the high baseline levels observed in the liver of DIO WT and DIO KO mice. Thus, both IL-6 and obesity modulate the response to endotoxemia, suggesting a complex interaction that needs to be considered when evaluating the effect of obesity on the outcome of septic patients.  相似文献   

6.
Previous studies have implicated a role of heterotrimeric Gαi proteins in lipopolysaccharide (LPS)-induced inflammatory responses. We hypothesized that Toll-like receptor (TLR) signaling regulates Gαi proteins, which are anti-inflammatory in endotoxemia and polymicrobial sepsis. RAW 264.7 cells were stimulated with LPS and the Gαi-GTP protein complex was immunoprecipitated with a Gαi protein activation assay. In subsequent in vivo studies, the Gαi protein inhibitor pertussis toxin (PTx) or Gi protein agonist mastoparan (MP-7) were administrated prior to endotoxemia. LPS-induced pro-inflammatory cytokines and mortality were determined. To examine the role of Gαi2 in sepsis, Gαi2 (−/−) and wildtype (WT) mice were subjected to cecal ligation and puncture (CLP) and monitored every 24 h for 120 h. Other mice were sacrificed 24 h after CLP. Peritoneal fluid, blood, and tissue samples were collected. Plasma pro-inflammatory cytokine production, bacterial load in peritoneal fluid, blood and lung tissue, myeloperoxidase (MPO) activity in lung and liver and different immune cell populations in spleen were studied. We found that Gαi proteins are rapidly activated by LPS followed by rapid inactivation. These studies provide the first direct evidence that Gαi proteins are modulated by TLR signaling. In following studies, PTx augmented LPS-induced plasma TNFα, IL-6, whereas MP-7 suppressed LPS-induced TNFα and decreased LPS-induced mortality. In sepsis studies, the survival rate post-CLP was significantly decreased in the Gαi2 (−/−) mice compared to WT mice. CLP-induced plasma TNFα, IL-6, bacterial load in peritoneal fluid, blood and lung tissue and lung and liver MPO activity were significantly increased in Gαi2 (−/−) compared to WT mice. Gαi2 (−/−) mice also exhibited increased Th1 and Th2 responses compared to WT mice. Taken together, Gαi proteins are activated by LPS and negatively regulate endotoxemia and sepsis. Understanding the role of Gαi2 protein in regulation of the inflammatory response in sepsis may provide novel targets for treatment of sepsis.  相似文献   

7.
8.
During Gram-negative sepsis and endotoxemia, CD14 is essential for the recognition of LPS by the TLR4 complex and subsequent generation of systemic inflammation. However, CD14-independent responses to LPS have been reported in vitro and in vivo in selected tissues including the skin. As the liver is a key target organ for neutrophil sequestration and inflammatory pathology during sepsis and endotoxemia, we investigated the role of CD14 in the recruitment of neutrophils into the liver in a mouse model of endotoxemia. Using dynamic in vivo imaging of the liver, we observed that neutrophil recruitment within the sinusoids and post-sinusoidal venules occurred equivalently between LPS-treated wild-type and CD14-knockout mice. Neutrophil recruitment within the liver was completely independent of CD14 regardless of whether it was expressed on cells of hematopoietic or nonhematopoietic origin or in serum as soluble CD14. Whereas CD14 expression was essential for activation of circulating neutrophils and for the development of LPS-induced systemic inflammation (pulmonary neutrophil sequestration, leukopenia, and increased serum proinflammatory cytokine levels), deficiency of CD14 did not limit the adhesion strength of neutrophils in vitro. Furthermore, wild-type and CD14-knockout mice displayed identical deposition of serum-derived hyaluronan-associated protein within liver sinusoids in response to LPS, indicating that the sinusoid-specific CD44/hyaluronan/serum-derived hyaluronan-associated protein-dependent pathway of neutrophil adhesion is activated independently of CD14. Therefore, the liver microcirculation possesses a unique CD14-independent mechanism of LPS detection and activation of neutrophil recruitment.  相似文献   

9.
Glaros T  Fu Y  Xing J  Li L 《PloS one》2012,7(4):e34633
The neutrophil gelatinase-associated lipocalin 2 (LCN2) is a critical inflammatory mediator persistently induced during endotoxemia, contributing to tubular damage and kidney failure. The intracellular process responsible for persistent induction of LCN2 by bacterial endotoxin Lipopolysaccharide (LPS) is not well understood. Using primary kidney fibroblasts, we observed that LPS-induced LCN2 expression requires a coupled circuit involving an early transient phase of AP-1 path and a late persistent phase of C/EBPδ path, both of which are dependent upon the interleukin 1 receptor associated kinase 1 (IRAK-1). Using immunoprecipitation analysis we observed transient binding of AP-1 to the promoters of both TNFα and C/ebpδ. On the other hand, we only observed persistent binding of C/EBPδ to its own promoter but not on TNFα. Blockage of new protein synthesis using cyclohexamide significantly reduced the expression of C/EBPδ as well as LCN2. By chromatin immunoprecipitation analyses, we demonstrated that LPS recruited C/EBPδ to the Lcn2 promoter in WT, but not IRAK-1 deficient fibroblasts. A differential equation-based computational model captured the dynamic circuit leading to the persistent induction of LCN2. In vivo, we observed elevated levels of LCN2 in kidneys harvested from LPS-injected WT mice as compared to IRAK-1 deficient mice. Taken together, this study has identified an integrated intracellular network involved in the persistent induction of LCN2 by LPS.  相似文献   

10.
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.  相似文献   

11.
Endotoxemia plays an important role in the pathogenesis of sepsis and is accompanied by dysregulated apoptosis of immune and non-immune cells. Treatment with statins reduces mortality in rodent models of sepsis and endotoxemia. Inhibition of protein isoprenylation, including farnesylation, has been proposed as a mechanism to mediate the lipid-lowering-independent effects of statins. Nonetheless, the effects of the inhibition of isoprenylation have not yet been studied. To investigate the role of farnesylation, we evaluated the effects of farnesyltransferase inhibitor and statin on survival following lipopolysaccharide (LPS) challenge in mice. Both simvastatin (2 mg/kg BW) and FTI-277 (20 mg/kg BW) treatment improved survival by twofold after LPS injection, as compared with vehicle alone (p < 0.01). LPS-induced cleavage (activation) of caspase-3, an indicator of apoptotic change, and increased protein expression of proapoptotic molecules, Bax and Bim, and activation of c-Jun NH2-terminal kinase (JNK/SAPK) in the liver and spleen were attenuated by both simvastatin and FTI-277. These results demonstrate that farnesyltransferase inhibitor as well as statin significantly reduced LPS-induced mortality in mice. Our findings also suggest that inhibition of protein farnesylation may contribute to the lipid-lowering-independent protective effects of statins in endotoxemia, and that protein farnesylation may play a role in LPS-induced stress response, including JNK/SAPK activation, and apoptotic change. Our data argue that farnesyltransferase may be a potential molecular target for treating patients with endotoxemia.  相似文献   

12.
Galectin-3 is a beta-galactoside-binding lectin that plays an important role in inflammatory diseases. It also interacts with the surface carbohydrates of many pathogens, including LPS. However, its role in infection is not fully understood. Data presented herein demonstrate for the first time that galectin-3 is a negative regulator of LPS-induced inflammation. Galectin-3 is constitutively produced by macrophages and directly binds to LPS. Galectin-3-deficient macrophages had markedly elevated LPS-induced signaling and inflammatory cytokine production compared with wild-type cells, which was specifically inhibited by the addition of recombinant galectin-3 protein. In contrast, blocking galectin-3 binding sites by using a neutralizing Ab or its ligand, beta-lactose, enhanced LPS-induced inflammatory cytokine expression by wild-type macrophages. In vivo, mice lacking galectin-3 were more susceptible to LPS shock associated with excessive induction of inflammatory cytokines and NO production. However, these changes conferred greater resistance to Salmonella infection. Thus, galectin-3 is a previously unrecognized, naturally occurring, negative regulator of LPS function, which protects the host from endotoxin shock but, conversely, favors Salmonella survival.  相似文献   

13.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

14.
Saia RS  Carnio EC 《Life sciences》2006,79(15):1473-1478
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.  相似文献   

15.
We tested the hypotheses that 1) systemic IL-10, after adenoviral gene transfer, protects arteries from impaired relaxation produced by LPS; 2) local expression of IL-10 within the arterial wall protects against vasomotor dysfunction after LPS; and 3) IL-10 protects against vascular dysfunction mediated by inducible NO synthase (iNOS) after LPS. In IL-10-deficient (IL-10-/-) and wild-type (WT, IL-10+/+) mice, LPS in vivo impaired relaxation of arteries to acetylcholine and gene transfer of IL-10 improved responses to acetylcholine. Superoxide levels were elevated in arteries after LPS, and increased levels of superoxide were prevented by gene transfer of IL-10. In arteries incubated with a low concentration of LPS in vitro to eliminate systemic effects of LPS and IL-10 from nonvascular sources, responses to acetylcholine were impaired in IL-10-deficient mice and impairment was largely prevented by gene transfer in vitro of IL-10. In arteries from WT mice in vitro, the low concentration of LPS did not impair responses to acetylcholine. Thus IL-10 within the vessel wall protects against LPS-induced dysfunction. In IL-10-deficient mice, aminoguanidine, which inhibits iNOS, protected against vasomotor dysfunction after LPS. In arteries from iNOS-deficient mice, LPS did not impair responses to acetylcholine. These findings suggest that both systemic and local effects of IL-10 provide important protection of arteries against an inflammatory stimulus and that IL-10 decreases iNOS-mediated impairment of vasorelaxation after LPS.  相似文献   

16.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

17.
The pathogenesis of sepsis is characterized by overwhelming inflammatory responses that lead to tissue damage and organ failure. Toll-like receptor (TLR) signaling is crucial for induction of hyperinflammatory responses and tissue injury during sepsis. Genipin, an aglycon of geniposide, has antiinflammatory and antimicrobial activities. The purpose of this study was to test the hypothesis that genipin reduces multiple organ dysfunction and mortality during sepsis through inhibition of TLR signaling. Male ICR were subjected to sepsis by cecal ligation and puncture (CLP) or endotoxemia by lipopolysaccharide (LPS). Various doses of genipin (1, 2.5 and 5 mg/kg) or a vehicle were administered intravenously immediately after CLP or intraperitoneally after LPS treatment. In another set of survival tests, mice were treated with 2.5 mg/kg of genipin 0 and 24 h after CLP. Genipin was found to improve survival and to attenuate multiple organ dysfunction. Genipin attenuated production of proinflammatory cytokines and release of high-mobility group box 1 (HMGB1). Genipin prevented TLR2 and TLR4, myeloid differentiation factor 88 and the Toll/interleukin-1 receptor domain-containing adaptor protein, inducing interferon-β overexpression. Phosphorylation of mitogen-activated protein kinases and interferon regulatory factor 3 and translocation of nuclear factor (NF)-κB were prevented by genipin. Moreover, genipin attenuated increases in serum tumor necrosis factor-α and HMGB1 in LPS-induced endotoxemia. Pam3CSK4- and LPS-mediated production of nitrites and proinflammatory cytokines was suppressed by genipin in RAW264.7 cells. Genipin attenuated mortality and organ injuries during sepsis through interference with TLR signaling. Therefore, genipin might be useful as a potential therapeutic agent for treatment of sepsis.  相似文献   

18.
The anemia of chronic disease (also called anemia of inflammation) is an acquired disorder of iron homeostasis associated with infection, malignancy, organ failure, trauma, or other causes of inflammation. It is now widely accepted that induction of hepcidin expression in response to inflammation might explain the characteristic hypoferremia associated with this condition. To determine the role of hepcidin in acute inflammation and the regulation of its receptor, the iron exporter, ferroportin, wild-type, heterozygote and hepcidin knockout mice (Hepc−/−) were challenged with sublethal doses of lipopolysaccharide (LPS). Six hours after injection, ferroportin mRNA and protein levels were assessed in the duodenum and the spleen and plasma iron was determined. Our results demonstrate that hepcidin is crucial, though not the sole mediator of LPS-mediated acute hypoferremia, and also that hepcidin major contribution relies on decreased ferroportin protein levels found in the spleen. Furthermore, we establish that LPS-mediated repression of the membrane iron transporter DMT1 and oxidoreductase Dcytb in the duodenum is independent of hepcidin. Finally, our results in the hepc+/− mice indicate that elevated hepcidin gene expression is not a prerequisite for the setting of hypoferremia during early inflammatory response, and they highlight the intimate crosstalk between inflammatory and iron-responsive pathways for the control of hepcidin.  相似文献   

19.
20.
Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100?µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice.

Highlights: We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号