首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Innate immune detection and subsequent immune responses rely on the initial recognition of pathogen specific molecular motifs. Foreign nucleic acids are key structures recognised by the immune system, recognition of which occurs mainly through the use of nucleic acid receptors including members of the Toll-like receptors, AIM2-like receptors, RIG-I-like receptors and intracellular DNA receptors. While the immune system is critically important in protecting the host from infection, it is of utmost importance that it is tightly regulated, in order to prevent recognition of self-nucleic acids and the subsequent development of autoimmunity. Defects in the mechanisms regulating such pathways, for example mutations in endonucleases that clear DNA, altered expression of nucleic acid sensors and defects in negative regulators of these signalling pathways involved in RNA/DNA sensing, have all been implicated in promoting the generation of autoimmune responses. This evidence, as reviewed here, suggests that novel therapeutics targeting these sensors and their downstream pathways may be of use in the treatment of patients with autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and primary Sjögren's syndrome.  相似文献   

3.
As a part of our efforts to clarify structure-function relationships in reactions catalyzed by deoxyribozymes (DNAzymes), which were recently selected in vitro , we synthesized various chimeras and analyzed the kinetics of the corresponding cleavage reactions. We focused on the binding arms and generated helices composed of binding arms and substrates that consisted of RNA and RNA, of RNA and DNA or of DNA and DNA. As expected for the rate limiting chemical cleavage step in reactions catalyzed by DNAzymes, a linear relationship between log( k cat) and pH was observed. In all cases examined, introduction of DNA into the binding helix enhanced the rate of chemical cleavage. Comparison of CD spectra of DNAzyme. substrate complexes suggested that higher levels of B-form-like helix were associated with higher rates of cleavage of the substrate within the complex. To our surprise, the enhancement of catalytic activity that followed introduction of DNA into the binding helix (enhancement by the presence of more B-form-like helix) was very similar to that observed in the case of the hammerhead ribozymes that we had investigated previously. These data, together with other observations, strongly suggest that the reaction mechanism of metal-ion-dependent DNAzymes is almost identical to that of hammerhead ribozymes.  相似文献   

4.
Guanine-rich oligonucleotides (GROs) are promising therapeutic candidate for cancer treatment and other biomedical application. We have introduced a G-quadruplex (G4) ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, to monitor the cellular uptake of naked GROs and map their intracellular localizations in living cells by using confocal microscopy. The GROs that form parallel G4 structures, such as PU22, T40214 and AS1411, are detected mainly in the lysosome of CL1-0 lung cancer cells after incubation for 2 h. On the contrary, the GROs that form non-parallel G4 structures, such as human telomeres (HT23) and thrombin binding aptamer (TBA), are rarely detected in the lysosome, but found mainly in the mitochondria. Moreover, the fluorescence resonant energy transfer studies of fluorophore-labeled GROs show that the parallel G4 structures can be retained in CL1-0 cells, whereas the non-parallel G4 structures are likely distorted in CL1-0 cells after cellular uptake. Of interest is that the distorted G4 structure of HT23 from the non-parallel G4 structure can reform to a probable parallel G4 structure induced by a G4 ligand in CL1-0 living cells. These findings are valuable to the design and rationale behind the possible targeted drug delivery to specific cellular organelles using GROs.  相似文献   

5.
Particular guanine rich nucleic acid sequences can fold into stable secondary structures called G-quadruplexes. These structures have been identified in various regions of the genome that include the telomeres, gene promoters and UTR regions, raising the possibility that they may be associated with biological function(s). Computational analysis has predicted that intramolecular G-quadruplex forming sequences are prevalent in the human genome, thus raising the desire to differentially recognize genomic G-quadruplexes. We have employed antibody phage display and competitive selection techniques to generate a single-chain antibody that shows >1000-fold discrimination between G-quadruplex and duplex DNA, and furthermore >100-fold discrimination between two related intramolecular parallel DNA G-quadruplexes. The amino acid sequence composition at the antigen binding site shows conservation within the light and heavy chains of the selected scFvs, suggesting sequence requirements for G-quadruplex recognition. Circular dichroism (CD) spectroscopic data showed that the scFv binds to the prefolded G-quadruplex and does not induce G-quadruplex structure formation. This study demonstrates the strongest discrimination that we are aware of between two intramolecular genomic G-quadruplexes.  相似文献   

6.
The triazine derivative 12459 is a potent G-quadruplex ligand that triggers apoptosis or delayed growth arrest, telomere shortening and G-overhang degradation, as a function of its concentration and time exposure to the cells. We have investigated here the DNA damage response induced by 12459 in A549 cells. Submicromolar concentrations of 12459 triggers a delayed Chk1-ATR–mediated DNA damage response associated with a telomeric dysfunction and a G2/M arrest. Surprisingly, increasing concentrations of 12459 leading to cell apoptosis induced a mechanism that bypasses the DNA damage signaling and leads to the dephosphorylation of Chk1 and γ-H2AX. We identified the phosphatase Protein Phosphatase Magnesium dependent 1D/Wild-type P53-Induced Phosphatase (PPM1D/WIP1) as a factor responsible for this dephosphorylation. SiRNA-mediated depletion of PPM1D/WIP1 reactivates the DNA damage signaling by 12459. In addition, PPM1D/WIP1 is activated by reactive oxygen species (ROS) induced by 12459. ROS generated by 12459 are sufficient to trigger an early DNA damage in A549 cells when PPM1D/WIP1 is depleted. However, ROS inactivation by N-acetyl cysteine (NAC) treatment does not change the apoptotic response induced by 12459. Because PPM1D expression was recently reported to modulate the recruitment of DNA repair molecules, our data would suggest a cycle of futile protection against 12459, thus leading to a delayed mechanism of cell death.  相似文献   

7.
Selective and sensitive detection of G-quadruplex DNA structures is an important issue and attracts extensive interest. To this end, numerous small molecular fluorescent probes have been designed. Here, we present a series of N-alkylated styrylquinolinium dyes named Ls-1, Ls-2 and Ls-3 with varying side groups at the chain end. We found that these dyes exhibited different binding behaviors to DNAs, and Ls-2 with a sulfonato group at the chain end displayed sensitivity and selectivity to G-quadruplex DNA structures in vitro. The characteristics of this dye and its interaction with G-quadruplex DNA were comprehensively investigated by means of UV–vis spectrophotometry, fluorescence, circular dichroism and molecular docking. Furthermore, confocal fluorescence images and MTT assays indicated dye Ls-2 could pass through membrane and enter the living HepG2 cells with low cytotoxicity.  相似文献   

8.
BackgroundThe human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure.MethodsIsothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na+] or [K+]  0.15 M).ResultsThe apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a “four-independent-sites model”. The two highest-affinity sites exhibit a K in the range of 108 to 1010 M 1 with the two lower-affinity sites exhibiting a K in the range of 104 to 105 M 1. Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a “two-independent-sites model” in which only the end-stacking binding mode is observed with a K in the range of 104 to 105 M 1.ConclusionsIn the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an “end stacking” mechanism for the higher affinity binding mode and an “intercalation” mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the “end-stacking” mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands.General significanceThe preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

9.
Most of the G-quadruplex interactive molecules reported to date contain extended aromatic flat ring systems and are believed to bind principally by π–π stacking on the end G-tetrads of the quadruplex structure. One such molecule, TMPyP4, (5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin), exhibits high affinity and some selectivity for G-quadruplex DNA over duplex DNA. Although not a realistic drug candidate, TMPyP4 is used in many nucleic acid research laboratories as a model ligand for the study of small molecule G-quadruplex interactions. Here we report on the synthesis and G-quadruplex interactions of four new cationic porphyrin ligands having only 1, 2, or 3 (N-methyl-4-pyridyl) substituents. The four new ligands are: P(5) (5-(N-methyl-4-pyridyl)porphyrin), P(5,10) (5,10-di(N-methyl-4-pyridyl)porphyrin), P(5,15) (5,15-di(N-methyl-4-pyridyl)porphyrin), and P(5,10,15) (5,10,15-tri(N-methyl-4-pyridyl)porphyrin). Even though these compounds have been previously synthesized, we report alternative synthetic routes that are more efficient and that result in higher yields. We have used ITC, CD, and ESI-MS to explore the effects of the number of N-methyl-4-pyridyl substituents and the substituent position on the porphyrin on the G-quadruplex binding energetics. The relative affinities for binding these ligands to the WT Bcl-2 promoter sequence G-quadruplex are: KTMPyP4  KP(5,15) > KP(5,10,15) >>> KP(5,10), KP(5). The saturation stoichiometry is 2:1 for both P(5,15) and P(5,10,15), while neither P(5) nor P(5,10) exhibit significant complex formation with the WT Bcl-2 promoter sequence G-quadruplex. Additionally, binding of P(5,15) appears to interact by an ‘intercalation mode’ while P(5,10,15) appears to interact by an ‘end-stacking mode’.  相似文献   

10.
Human telomeric DNA consists of tandem repeats of the sequence 5'-d(TTAGGG)-3'. Guanine-rich DNA, such as that seen at telomeres, forms G-quadruplex secondary structures. Alternative forms of G-quadruplex structures can have differential effects on activities involved in telomere maintenance. With this in mind, we analyzed the effect of sequence and length of human telomeric DNA on G-quadruplex structures by native polyacrylamide gel electrophoresis and circular dichroism. Telomeric oligonucleotides shorter than four, 5'-d(TTAGGG)-3' repeats formed intermolecular G-quadruplexes. However, longer telomeric repeats formed intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in any one of the repeats of 5'-d(TTAGGG)(4)-3' converted an intramolecular structure to intermolecular G-quadruplexes with varying degrees of parallel or anti-parallel-stranded character, depending on the length of incubation time and DNA sequence. These structures were most abundant in K(+)-containing buffers. Higher-order structures that exhibited ladders on polyacrylamide gels were observed only for oligonucleotides with the first telomeric repeat altered. Altering the sequence of 5'-d(TTAGGG)(8)-3' did not result in the substantial formation of intermolecular structures even when the oligonucleotide lacked four consecutive telomeric repeats. However, many of these intramolecular structures shared common features with intermolecular structures formed by the shorter oligonucleotides. The wide variability in structure formed by human telomeric sequence suggests that telomeric DNA structure can be easily modulated by proteins, oxidative damage, or point mutations resulting in conversion from one form of G-quadruplex to another.  相似文献   

11.
We report the first direct solution NMR detection of the alkali metal cations (23Na+, 39K+, and 87Rb+) residing inside G-quadruplex channel structures formed by guanosine 5′-monophosphate and a DNA oligomer, d(TG4T). In solution, these channel alkali metal cations are tightly bound to the G-quadruplex structure and have been considered to be “invisible” to NMR spectroscopy for many years. Our finding that it is possible to directly observe these alkali metal cations by NMR spectroscopy provides a new tool for studying cation binding affinity and dynamics in G-quadruplex DNA.  相似文献   

12.
Interactions between human DNA polymerase beta and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol beta binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol beta)(16) and (pol beta)(5) binding modes. The affinity, as well as the stoichiometry of human pol beta binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol beta. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5'-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol beta is discussed.  相似文献   

13.
14.
Simultaneous limitation of microbial growth by two or more nutrients is discussed for dual carbon/nitrogen-limited growth in continuous culture. The boundaries of the zone where double-limited growth occurs can be clearly defined from both cultivation data and cellular composition and they can be also predicted from growth yield data measured under single-substrate-limited conditions. It is demonstrated that for the two nutrients carbon and nitrogen the zone of double nutrient limitation is dependent on both the C:N ratio of the growth medium and the growth (dilution) rate. The concept on double-(carbon/nitrogen)-limited growth presented here can be extended to other binary and multiple combinations of nutrients.  相似文献   

15.
16.
17.
Guanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution. The conformational changes were carried out by incorporating two duplex DNAs, with G–G mismatch repeats in the middle, inside a DNA origami frame and monitoring the topology change of the strands. In the absence of KCl, incorporated duplexes had no interaction and laid parallel to each other. Addition of KCl induced the formation of a G-quadruplex structure by stably binding the duplexes to each other in the middle. Such a quadruplex formation allowed the DNA synapsis without disturbing the duplex regions of the participating sequences, and resulted in an X-shaped structure that was monitored by atomic force microscopy. Further, the G-quadruplex formation in KCl solution and its disruption in KCl-free buffer were analyzed in real-time. The orientation of the G-quadruplex is often difficult to control and investigate using traditional biochemical methods. However, our method using DNA origami could successfully control the strand orientations, topology and stoichiometry of the G-quadruplex.  相似文献   

18.
The pfl operon is expressed at high levels anaerobically. Growth of Escherichia coli in the presence of nitrate or nitrite led to a 45% decrease in expression when cells were cultivated in rich medium. Nitrate repression, however, was significantly enhanced (sevenfold) when the cells were cultured in minimal medium. Regulation of pfl expression by nitrate was dependent on the NarL, NarP, NarQ, and NarX proteins but independent of FNR, ArcA, and integration host factor, which are additional regulators of pfl expression. Strains unable to synthesize any one of the NarL, NarP, NarQ, or NarX proteins, but retaining the capacity to synthesize the remaining three, exhibited essentially normal nitrate regulation. In contrast, narL narP and narX narQ double null mutants were devoid of nitrate regulation when cultured in rich medium but they retained some nitrate repression (1.3-fold) when grown in minimal medium. By using lacZ fusions, it was possible to localize the DNA sequences required to mediate nitrate repression to the pfl promoter-regulatory region. DNase I footprinting studies identified five potential binding sites for the wild-type NarL protein in the pfl promoter-regulatory region. Specific footprints were obtained only when NarL was phosphorylated with acetyl phosphate before the binding reaction was performed. Each of the protected regions contained at least one heptamer sequence which has been deduced from mutagenesis studies to be essential for NarL binding (K. Tyson, A. Bell, J. Cole, and S. Busby, Mol. Microbiol. 7:151-157, 1993).  相似文献   

19.
We have performed systematic spectroscopic titrations to characterize the binding reaction of cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) with the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d[TAGGG(TTAGGG)3T] (S24), for which special effort was made to examine the TMPyP4-G4 binding stoichiometry, the binding modes, and the conformational conversion of the G4 structure under different potassium ion (K+) concentration. It is found that, in the presence of 0, 10 mM, and 100 mM K+, TMPyP4 forms a complex with the anti-parallel G4 in a TMPyP4-to-G4 molar ratio of 5, 5 and 3, respectively, and the increase of K+ concentration would reduce the binding affinity of TMPyP4 to G4. For the TMPyP4-G4 complex, the end-stacking mode and groove binding mode were presumed mainly by the results of time-resolved fluorescence spectroscopy in the three cases. Most importantly, it is found that TMPyP4 can directly induce the formation of the anti-parallel G4 structure from the single-strand oligonucleotide S24 in the absence of K+, and that it can preferentially induce the conformational conversion of the G4 structure from the hybrid-type to the anti-parallel one in the presence of K+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号