首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
The marine Roseobacter clade bacteria comprise up to 20% of the microbial community in coastal surface seawater. Marine Roseobacter clade bacteria are known to catalyse some important biogeochemical transformations in marine carbon and sulfur cycles. Using a comparative genomic approach, this study revealed that many marine Roseobacter clade bacteria have the genetic potential to utilize methylated amines (MAs) as alternative nitrogen sources. These MAs represent a significant pool of dissolved organic carbon and nitrogen in the marine environment. The marine Roseobacter clade bacterial genomes also encode full sets of genes providing them with the potential to generate energy from complete oxidation of the methyl groups of MAs. Representative species of the marine Roseobacter clade were tested and their abilities to use MAs are directly linked to the presence in their genomes of genes encoding key enzymes involved in MA metabolism, including trimethylamine monooxygenase (tmm) and gamma-glutamylmethylamide synthetase (gmaS). These two genes were chosen as functional markers for detecting MA-utilizing marine Roseobacter clade bacteria in the environment. PCR primers targeting these two genes were designed and used successfully to retrieve corresponding gene sequences from MA-utilizing isolates of the marine Roseobacter clade, as well as directly from DNA extracted from surface seawater obtained from Station L4 off the coast of Plymouth, UK. Taken together, the results suggest that MAs may serve as important nitrogen and possibly energy sources for marine Roseobacter clade bacteria, which helps to explain their global success in the marine environment.  相似文献   

2.
Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and help to explain the dominance of members of this clade in association with marine algal microbiota.  相似文献   

3.
4.
The marine Roseobacter clade comprises several genera of marine bacteria related to the uncultured SAR83 cluster, the second most abundant marine picoplankton lineage. Cultivated representatives of this clade are physiologically heterogeneous, and only some have the capability for aerobic anoxygenic photosynthesis, a process of potentially great ecological importance in the world's oceans. In an attempt to correlate phylogeny with ecology, we investigated the diversity of Roseobacter clade strains from various marine habitats (water samples, biofilms, laminariae, diatoms, and dinoflagellate cultures) by using the 16S rRNA gene as a phylogenetic marker gene. The potential for aerobic anoxygenic photosynthesis was determined on the genetic level by PCR amplification and sequencing of the pufLM genes of the bacterial photosynthesis reaction center and on the physiological level by detection of bacteriochlorophyll (Bchl) a. A collection of ca. 1,000 marine isolates was screened for members of the marine Roseobacter clade by 16S rRNA gene-directed multiplex PCR and sequencing. The 42 Roseobacter clade isolates found tended to form habitat-specific subclusters. The pufLM genes were detected in two groups of strains from dinoflagellate cultures but in none of the other Roseobacter clade isolates. Strains within the first group (the DFL-12 cluster) also synthesized Bchl a. Strains within the second group (the DFL-35 cluster) formed a new species of Roseovarius and did not produce Bchl a under the conditions investigated here, thus demonstrating the importance of genetic methods for screening of cultivation-dependent metabolic traits. The pufL genes of the dinoflagellate isolates were phylogenetically closely related to pufL genes from Betaproteobacteria, confirming similar previous observations which have been interpreted as indications of gene transfer events.  相似文献   

5.
6.
Bacterioplankton are major biogeochemical agents responsible for mediating the flux of dissolved organic matter (DOM) and subsequent cycling of nutrients in the oceans. Most information about the composition of bacterioplankton communities has come from studies along well-defined biogeochemical gradients in the northern hemisphere. This study extends observations of spatial and temporal dynamics for SAR11, Actinobacteria and OCS116 in the North Atlantic by demonstrating distinct spatial variability in the abundance and distribution of these and other lineages across the South Atlantic gyre and in the Benguela upwelling system. We identified shifts in SAR11, Actinobacteria, OCS116, SAR86, SAR116 and members of the Roseobacter clade along basin-scale gradients in nutrients, chlorophyll and dissolved organic carbon (DOC). Distinct SAR11 subclades dominated the western and eastern regions of the gyre, and Actinobacteria, OCS116 and members of the Roseobacter lineages were most abundant at the deep chlorophyll maxima. SAR86 and SAR116 accounted for a significant fraction of coastal and open ocean communities, respectively, and members of the gamma sulfur oxidizer (GSO) clade persisted in the Benguela upwelling system. These data suggest that distinct communities are partitioned along basin-scale biogeochemical gradients, that SAR11 community structure varies across the gyre and that Actinobacteria, OCS116, and members of the Roseobacter clade are closely associated with phytoplankton in the gyre.  相似文献   

7.
Here we announce the genome sequence of a marine bacterium, HTCC2150, that was isolated off the Oregon coast using dilution-to-extinction culturing and that is affiliated with the Roseobacter clade. The 16S rRNA phylogeny showed that the strain was closely related to members of the RCA clade. The genome sequence suggests that strain HTCC2150 is an organoheterotroph carrying diverse metabolic potential, including a close relationship with phytoplankton.  相似文献   

8.
Citreicella aestuarii 357 is a member of the Roseobacter clade that was isolated without xenobiotic pressure from an oil-polluted sand sample from the Galician coast (Spain). Its genome sequence suggests an organoheterotrophic metabolism, including a wide catabolic potential for aromatic hydrocarbons.  相似文献   

9.
Relationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coral Pocillopora meandrina was investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of the Alphaproteobacteria, a Pseudoalteromonas species of the Gammaproteobacteria, and a Synechococcus species of the Cyanobacteria phylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination of P. meandrina planulae by fluorescence in situ hybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains of Pseudoalteromonas and Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade and Synechococcus did not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.  相似文献   

10.
Lee J  Roh SW  Whon TW  Shin NR  Kim YO  Bae JW 《Journal of bacteriology》2011,193(13):3401-3402
Ruegeria sp. TW15, which belongs to the family Rhodobacteraceae, was isolated from an ark clam in the South Sea of Korea. Here is presented the draft genome sequence of Ruegeria sp. TW15 (4,490,771 bp with a G+C content of 55.7%), a member of the marine Roseobacter clade, which comprises up to 20% of the bacterioplankton in the coastal and oceanic mixed layer.  相似文献   

11.
12.
The Roseobacter clade of marine bacteria is often found associated with dinoflagellates, one of the major producers of dimethylsulfoniopropionate (DMSP). In this study, we tested the hypothesis that Roseobacter species have developed a physiological relationship with DMSP-producing dinoflagellates mediated by the metabolism of DMSP. DMSP was measured in Pfiesteria and Pfiesteria-like (Cryptoperidiniopsis) dinoflagellates, and the identities and metabolic potentials of the associated Roseobacter species to degrade DMSP were determined. Both Pfiesteria piscicida and Pfiesteria shumwayae produce DMSP with an average intracellular concentration of 3.8 microM. Cultures of P. piscicida or Cryptoperidiniopsis sp. that included both the dinoflagellates and their associated bacteria rapidly catabolized 200 microM DMSP (within 30 h), and the rate of catabolism was much higher for P. piscicida cultures than for P. shumwayae cultures. The community of bacteria from P. piscicida and Cryptoperidiniopsis cultures degraded DMSP with the production of dimethylsulfide (DMS) and acrylate, followed by 3-methylmercaptopropionate (MMPA) and methanethiol (MeSH). Four DMSP-degrading bacteria were isolated from the P. piscicida cultures and found to be taxonomically related to Roseobacter species. All four isolates produced MMPA from DMSP. Two of the strains also produced MeSH and DMS, indicating that they are capable of utilizing both the lyase and demethylation pathways. The diverse metabolism of DMSP by the dinoflagellate-associated Roseobacter spp. offers evidence consistent with a hypothesis that these bacteria benefit from association with DMSP-producing dinoflagellates.  相似文献   

13.
Strain HTCC2083 was isolated from Oregon seawater using dilution-to-extinction culturing and represents a novel member of the Roseobacter clade. The draft genome sequence of HTCC2083 is presented here. The genome is predicted to contain genes for aerobic anoxygenic phototrophy, sulfite-oxidizing chemolithotrophy, anapleurotic CO(2) fixation, carbon monoxide oxidation, and dimethylsulfoniopropionate (DMSP) utilization.  相似文献   

14.
Phototrophic anoxygenic purple bacteria play a key role in many aquatic ecosystems by oxidizing sulfur compounds and low-molecular-weight organic compounds using light as energy source. In this study, molecular methods based upon pufM gene (photosynthetic unit forming gene) were compared with culture-dependent methods to investigate anoxygenic purple phototrophic communities in sediments of an eutrophic brackish lagoon. Thirteen strains, belonging to eight different genera of purple phototrophic bacteria were isolated with a large dominance of the metabolically versatile purple non-sulfur bacteria (eight strains), some purple sulfur bacteria (three strains) and two strains belonging to the Roseobacter clade (aerobic phototrophs). The pufM genes amplified from the isolated strains were not detected by the molecular methods [terminal-restriction fragment length polymorphism (T-RFLP)] applied on in situ communities. An environmental clone library of the pufM gene was thus constructed from sediment samples. The results showed that most of the clones probably corresponded to aerobic phototrophic bacteria. Our results demonstrate that the culture-dependent techniques remain the best experimental approach for determining the diversity of phototrophic purple non-sulfur bacteria whereas the molecular approach clearly illustrated the abundance of organisms related to the Roseobacter clade in these eutrophic sediments.  相似文献   

15.
16.
Understanding of the ecological roles and evolutionary histories of marine bacterial taxa can be complicated by mismatches in genome content between wild populations and their better-studied cultured relatives. We used computed patterns of non-synonymous (amino acid-altering) nucleotide diversity in marine metagenomic data to provide high-confidence identification of DNA fragments from uncultivated members of the Roseobacter clade, an abundant taxon of heterotrophic marine bacterioplankton in the world's oceans. Differences in gene stoichiometry in the Global Ocean Survey metagenomic data set compared with 39 sequenced isolates indicated that natural Roseobacter populations differ systematically in several genomic attributes from their cultured representatives, including fewer genes for signal transduction and cell surface modifications but more genes for Sec-like protein secretion systems, anaplerotic CO(2) incorporation, and phosphorus and sulfate uptake. Several of these trends match well with characteristics previously identified as distinguishing r- versus K-selected ecological strategies in bacteria, suggesting that the r-strategist model assigned to cultured roseobacters may be less applicable to their free-living oceanic counterparts. The metagenomic Roseobacter DNA fragments revealed several traits with evolutionary histories suggestive of horizontal gene transfer from other marine bacterioplankton taxa or viruses, including pyrophosphatases and glycosylation proteins.  相似文献   

17.
Tidal effects on the composition of free-living (FL) and particle-associated (PA) bacterial communities were studied in a tidal flat ecosystem in the southern North Sea. Denaturing gradient gel electrophoresis targeting the 16S rRNA gene and the 16S rRNA of Bacteria, Bacteroidetes, Alphaproteobacteria and the Roseobacter clade was applied. Despite strong tidal variations in the quantity and, depending on the season, also the quality of suspended matter as well as variations in bacterial activity, the bacterial community composition remained rather stable. FISH showed some variations of the community composition, but these were not related to typical tidal situations. Variations were higher during tidal cycles in May and July compared with November. Bacteroidetes, Alpha- and Gammaproteobacteria constituted the majority of the bacterial communities but relative proportions of the different groups varied considerably. On particles, Betaproteobacteria were also detected to substantial proportions. The Roseobacter clade constituted up to 90% of FL but only 30% of PA Alphaproteobacteria. Banding patterns of the Bacteroidetes-specific amplicons, and in particular those targeting the 16S rRNA, revealed tidally induced effects, as several bands appeared or disappeared at distinct events such as slack water or resuspension. Sequencing of prominent bands revealed predominantly phylotypes reported previously from this ecosystem.  相似文献   

18.
Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles ( approximately 50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号