首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Minute virus of mice nonstructural protein NS1 is a multifunctional protein that is involved in many processes necessary for virus propagation. To perform its distinct activities in timely coordinated manner, NS1 was suggested to be regulated by posttranslational modifications, in particular phosphorylation. In fact, NS1 replicative functions are dependent on protein kinase C (PKC) phosphorylation, most likely due to alteration of the biochemical profile of the viral product as determined by comparing native NS1 with its dephosphorylated counterpart. Through the characterization of NS1 mutants at individual PKC consensus phosphorylation sites for their biochemical activities and nickase function, we were able to identify two target atypical PKC phosphorylation sites, T435 and S473, serving as regulatory elements for the initiation of viral DNA replication. Furthermore, by dissociating the energy-dependent helicase activity from the ATPase-independent trans esterification reaction using partially single-stranded substrates, we could demonstrate that atypical PKC regulation of NS1 nickase activity occurs at the level of origin unwinding prior to trans esterification.  相似文献   

3.
Jiao P  Tian G  Li Y  Deng G  Jiang Y  Liu C  Liu W  Bu Z  Kawaoka Y  Chen H 《Journal of virology》2008,82(3):1146-1154
In this study, we explored the molecular basis determining the virulence of H5N1 avian influenza viruses in mammalian hosts by comparing two viruses, A/Duck/Guangxi/12/03 (DK/12) and A/Duck/Guangxi/27/03 (DK/27), which are genetically similar but differ in their pathogenicities in mice. To assess the genetic basis for this difference in virulence, we used reverse genetics to generate a series of reassortants and mutants of these two viruses. We found that a single-amino-acid substitution of serine for proline at position 42 (P42S) in the NS1 protein dramatically increased the virulence of the DK/12 virus in mice, whereas the substitution of proline for serine at the same position (S42P) completely attenuated the DK/27 virus. We further demonstrated that the amino acid S42 of NS1 is critical for the H5N1 influenza virus to antagonize host cell interferon induction and for the NS1 protein to prevent the double-stranded RNA-mediated activation of the NF-κB pathway and the IRF-3 pathway. Our results indicate that the NS1 protein is critical for the pathogenicity of H5N1 influenza viruses in mammalian hosts and that the amino acid S42 of NS1 plays a key role in undermining the antiviral immune response of the host cell.  相似文献   

4.
Minute virus of mice NS1 protein is a multifunctional phosphoprotein endowed with a variety of enzymatic and regulatory activities necessary for progeny virus particle production. To regulate all of its different functions in the course of a viral infection, NS1 has been proposed to be modulated by posttranslational modifications, in particular, phosphorylation. Indeed, it was shown that the NS1 phosphorylation pattern is altered during the infectious cycle and that the biochemical profile of the protein is dependent on the phosphorylation state of the polypeptide. Moreover, in vitro approaches have identified members of the protein kinase C (PKC) family, in particular, atypical PKC, as regulators of viral DNA replication through the phosphorylation of NS1 residues T435 and S473, thereby activating the protein for DNA unwinding activities. In order to substantiate these findings in vivo, we produced NS1 in the presence of a dominant-negative PKClambda mutant and characterized the purified protein in vitro. The NS1 protein produced under these conditions was found to be only partially phosphorylated and as a consequence to be deficient for viral DNA replication. However, it could be rescued for this viral function by treatment with recombinant activated PKClambda. Our data clearly demonstrate that NS1 is a target for PKClambda phosphorylation in vivo and that this modification is essential for the helicase activity of the viral polypeptide. In addition, the phosphorylation of NS1 at residues T435 and S473 appeared to occur mainly in the nucleus, providing further evidence for the involvement of PKClambda which, unlike PKCzeta, accumulates in the nuclear compartment of infected cells.  相似文献   

5.
The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966-9977, 1998). The present study led to the identification of atypical PKClambda/iota as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKClambda phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKClambda phosphorylation at residue S473.  相似文献   

6.
Influenza A virus matrix protein (M1) plays an important role in virus assembly and budding. Besides a well-characterized basic amino acid-rich nuclear localization signal region at positions 101 to 105, M1 contains another basic amino acid stretch at positions 76-78 that is highly conserved among influenza A and B viruses, suggesting the importance of this stretch. To understand the role of these residues in virus replication, we mutated them to either lysine (K), alanine (A), or aspartic acid (D). We could generate viruses possessing either single or combination substitutions with K or single substitution with A at any of these positions, but not those with double substitutions with A or a single substitution with D. Viruses with the single substitution with A exhibited slower growth and had lower nucleoprotein/M1 quantitative ratio in virions compared to the wild-type virus. In cells infected with a virus possessing the single substitution with A at position 77 or 78 (R77A or R78A, respectively), the mutated M1 localized in patches at the cell periphery where nucleoprotein and hemagglutinin colocalized more often than the wild-type did. Transmission electron microscopy showed that virus possessing M1 R77A or R78A, but not the wild-type virus, was present in vesicular structures, indicating a defect in virus assembly and/or budding. The M1 mutations that did not support virus generation exhibited an aberrant M1 intracellular localization and affected protein incorporation into virus-like particles. These results indicate that the basic amino acid stretch of M1 plays a critical role in influenza virus replication.  相似文献   

7.
Twu KY  Noah DL  Rao P  Kuo RL  Krug RM 《Journal of virology》2006,80(8):3957-3965
The emergence of influenza A viruses resistant to the two existing classes of antiviral drugs highlights the need for additional antiviral drugs, particularly considering the potential threat of a pandemic of H5N1 influenza A viruses. Here, we determine whether influenza A virus replication can be selectively inhibited by blocking the ability of its NS1A protein to inhibit the 3'-end processing of cellular pre-mRNAs, including beta interferon (IFN-beta) pre-mRNA. Pre-mRNA processing is inhibited via the binding of the NS1A protein to the cellular CPSF30 protein, and mutational inactivation of this NS1A binding site causes severe attenuation of the virus. We demonstrate that binding of CPSF30 is mediated by two of its zinc fingers, F2F3, and that the CPSF30/F2F3 binding site on the NS1A protein extends from amino acid 144 to amino acid 186. We generated MDCK cells that constitutively express epitope-tagged F2F3 in the nucleus, although at only approximately one-eighth the level of the NS1A protein produced during virus infection. Influenza A virus replication was inhibited in this cell line, whereas no inhibition was observed with influenza B virus, whose NS1B protein lacks a binding site for CPSF30. Influenza A virus, but not influenza B virus, induced increased production of IFN-beta mRNA in the F2F3-expressing cells. These results, which indicate that F2F3 inhibits influenza A virus replication by blocking the binding of endogenous CPSF30 to the NS1A protein, point to this NS1A binding site as a potential target for the development of antivirals directed against influenza A virus.  相似文献   

8.
Avian influenza viruses belong to the genus influenza A virus of the family Orthomyxoviridae. The influenza virus consists of eight segmented minus stranded RNA that encode 11 known proteins. Among the 11 viral proteins, NS1 (non-structural protein 1, encoded on segment 8) has been implicated in the regulation of several important intra-cellular functions.In this report, we investigated the functional interaction of NS1 with serine threonine kinase Akt, a core intra-cellular survival regulator. In co-immunoprecipitation assays and GST pull-down assays, NS1 directly interacted with Akt. The interaction was mediated primarily through the Akt-PH (Pleckstrin Homology) domain and the RNA-binding domain of NS1. NS1 preferentially interacted with phosphorylated Akt, but not with non-phosphorylated Akt. Functionally, the NS1-Akt interaction enhanced Akt activity both in the intra-cellular context and in in vitro Akt kinase assays. Confocal microscopic analysis revealed that phosphorylated Akt interacted with NS1 during the interphase of the cell cycle predominantly within the nucleus. Finally, mass spectrometric analysis demonstrated the position at Thr215 of NS1 protein is primary phosphorylation target site through Akt activation. The results together supported the functional importance of influenza virus NS1 with Akt, a core intra-cellular survival regulator.  相似文献   

9.
Equine influenza is a common disease of the horse, causing significant morbidity worldwide. Here we describe the establishment of a plasmid-based reverse genetics system for equine influenza virus. Utilizing this system, we generated three mutant viruses encoding carboxy-terminally truncated NS1 proteins. We have previously shown that a recombinant human influenza virus lacking the NS1 gene (delNS1) could only replicate in interferon (IFN)-incompetent systems, suggesting that the NS1 protein is responsible for IFN antagonist activity. Contrary to previous findings with human influenza virus, we found that in the case of equine influenza virus, the length of the NS1 protein did not correlate with the level of attenuation of that virus. With equine influenza virus, the mutant virus with the shortest NS1 protein turned out to be the least attenuated. We speculate that the basis for attenuation of the equine NS1 mutant viruses generated is related to their level of NS1 protein expression. Our findings show that the recombinant mutant viruses are impaired in their ability to inhibit IFN production in vitro and they do not replicate as efficiently as the parental recombinant strain in embryonated hen eggs, in MDCK cells, or in vivo in a mouse model. Therefore, these attenuated mutant NS1 viruses may have potential as candidates for a live equine influenza vaccine.  相似文献   

10.
Theiler's murine encephalomyelitis viruses are picornaviruses that can infect the central nervous system. The DA strain produces an acute polioencephalomyelitis followed by a chronic demyelinating disease in its natural host, the mouse. The ability of DA virus to induce a demyelinating disease renders this virus infection a model for human demyelinating diseases such as multiple sclerosis. Here we describe the generation and characterization of DA virus mutants that contain specific mutations in the viral capsid protein VP1 at sites believed to be important contact regions for the cellular receptor(s). A mutant virus with a threonine-to-aspartate (T81D) substitution in VP1 loop I adjacent to the putative virus receptor binding site exhibited a large-plaque phenotype but had a slower replication cycle in vitro. When this mutant virus was injected into susceptible mice, an altered tropism was seen during the acute stage of the disease and the chronic demyelinating disease was not produced. A virus with a threonine-to-valine substitution (T81V) did not cause any changes in the pattern or extent of disease seen in mice, whereas a virus with a tryptophan substitution at this position (T81W) produced a similar acute disease but was attenuated for the development of the chronic disease. A change in amino acids in a hydrophobic patch located in the wall of the pit, VP1 position 91, to a hydrophilic threonine (V91T) resulted in a profound attenuation of the acute and chronic disease without persistence of virus. This report illustrates the importance of the loop I of VP1 and a site in the wall of the pit in pathogenesis and that amino acid substitutions at these sites result in altered virus-host interactions.  相似文献   

11.
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.  相似文献   

12.
Late in infection, parvovirus minute virus of mice (MVMp) induces the lysis of mouse A9 fibroblasts. This effect depends on the large nonstructural phosphoprotein NS1, which plays in addition a major role in viral DNA replication and progeny particle production. Since the NS1 C-terminal region is subjected to late phosphorylation events and protein kinase C (PKC) family members regulate NS1 replicative activities, the present study was conducted to determine the impact of PKCs on NS1 cytotoxic functions. To this end, we performed site-directed mutagenesis, substituting alanine residues for two consensus PKC-phosphorylation sites located within the NS1 C-terminal region, T585 and S588. Although these substitutions had no detectable effect on virus multiplication in a single-round infection, the NS1-585A mutant virus was significantly less toxic to A9 cells than wild-type MVMp, whereas the NS1-588A mutant virus was endowed with a higher killing potential. These alterations correlated with specific changes in the late phosphorylation pattern of the mutant NS1 proteins compared to the wild-type polypeptide. Since the mutations introduced in this region of the viral genome also made changes in the minor nonstructural protein NS2, a contribution of this polypeptide to the above-mentioned phenotypes of mutant viruses cannot be excluded at present. However, the involvement of NS1 in these phenotypes was directly supported by the respective reduced and enhanced capacity of NS1-585A and NS1-588A recombinant proteins for inducing morphological alterations and cell detachment in transfected A9 cultures. Altogether, these data suggest that late-occurring phosphorylation of NS1 specifically regulates the cytotoxic functions of the viral product and that residues T585 and S588 contribute to this control in an antagonistic way.  相似文献   

13.
Li Z  Jiang Y  Jiao P  Wang A  Zhao F  Tian G  Wang X  Yu K  Bu Z  Chen H 《Journal of virology》2006,80(22):11115-11123
In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.  相似文献   

14.
The 11th influenza A virus (IAV) protein PB1-F2 is encoded by an alternative reading frame of the PB1 polymerase gene and found in the nucleus, cytosol and at the mitochondria of infected cells, the latter is consistent with experimental evidence for its pro-apoptotic function. Here, the function of PB1-F2 as a phosphoprotein was characterized. PB1-F2 derived from isolate IAVPR8 and synthetic fragments thereof were phosphorylated in vitro by purified protein kinase C (PKC) and cellular extract. Constitutively active PKCα interacts with PB1-F2 in yeast two-hybrid assays. 32P radiolabelling of transfected 293T cells revealed that phosphorylation of PB1-F2 is sensitive to inhibitors of PKC and could be increased by the PKC activator PMA. ESI-MS analysis and cellular expression of PB1-F2 mutants identified the positions Ser-35 as the major and the Thr-27 as an alternative PKC phosphorylation site. Infection of MDCK cells with recombinant IAVPR8 lacking these PKC sites abrogated phosphorylation of PB1-F2 in vivo . Furthermore, infection of primary human monocytes with mutant viruses lacking these PB1-F2 phosphorylation sites resulted in impaired caspase 3 activation and reduced progeny virus titres, indicating that the integrity of the identified phosphorylation sites is crucial for a cell-specific function of PB1-F2 during virus replication.  相似文献   

15.
Influenza A virus is an important pathogenic virus known to induce host cell cycle arrest in G0/G1 phase and create beneficial conditions for viral replication. However, how the virus achieves arrest remains unclear. We investigated the mechanisms underlying this process and found that the nonstructural protein 1 (NS1) is required. Based on this finding, we generated a viable influenza A virus (H1N1) lacking the entire NS1 gene to study the function of this protein in cell cycle regulation. In addition to some cell cycle regulators that were changed, the concentration and activity of RhoA protein, which is thought to be pivotal for G1/S phase transition, were also decreased with overexpressing NS1. And in the meantime, the phosphorylation level of cell cycle regulator pRb, downstream of RhoA kinase, was decreased in an NS1-dependent manner. These findings indicate that the NS1 protein induces G0/G1 cell cycle arrest mainly through interfering with the RhoA/pRb signaling cascade, thus providing favorable conditions for viral protein accumulation and replication. We further investigated the NS1 protein of avian influenza virus (H5N1) and found that it can also decrease the expression and activity of RhoA, suggesting that the H5N1 virus may affect the cell cycle through the same mechanism. The NS1/RhoA/pRb cascade, which can induce the G0/G1 cell cycle arrest identified here, provides a unified explanation for the seemingly different NS1 functions involved in viral replication events. Our findings shed light on the mechanism of influenza virus replication and open new avenues for understanding the interaction between pathogens and hosts.  相似文献   

16.
Hepatitis C virus (HCV) is a significant pathogen, infecting some 170 million people worldwide. Persistent virus infection often leads to cirrhosis and liver cancer. In the infected cell many RNA directed processes must occur to maintain and spread infection. Viral genomic RNA is constantly replicating, serving as template for translation, and being packaged into new virus particles; processes that cannot occur simultaneously. Little is known about the regulation of these events. The viral NS5A phosphoprotein has been proposed as a regulator of events in the HCV life cycle for years, but the details have remained enigmatic. NS5A is a three-domain protein and the requirement of domains I and II for RNA replication is well documented. NS5A domain III is not required for RNA replication, and the function of this region in the HCV lifecycle is unknown. We have identified a small deletion in domain III that disrupts the production of infectious virus particles without altering the efficiency of HCV RNA replication. This deletion disrupts virus production at an early stage of assembly, as no intracellular virus is generated and no viral RNA and nucleocapsid protein are released from cells. Genetic mapping has indicated a single serine residue within the deletion is responsible for the observed phenotype. This serine residue lies within a casein kinase II consensus motif, and mutations that mimic phosphorylation suggest that phosphorylation at this position regulates the production of infectious virus. We have shown by genetic silencing and chemical inhibition experiments that NS5A requires casein kinase II phosphorylation at this position for virion production. A mutation that mimics phosphorylation at this position is insensitive to these manipulations of casein kinase II activity. These data provide the first evidence for a function of the domain III of NS5A and implicate NS5A as an important regulator of the RNA replication and virion assembly of HCV. The ability to uncouple virus production from RNA replication, as described herein, may be useful in understanding HCV assembly and may be therapeutically important.  相似文献   

17.
18.
The protein kinase inhibitor H7 blocks influenza virus replication, inhibits production of the matrix protein (M1), and leads to a retention of the viral ribonucleoproteins (vRNPs) in the nucleus at late times of infection (K. Martin and A. Helenius, Cell 67:117-130, 1991). We show here that production of assembled vRNPs occurs normally in H7-treated cells, and we have used H7 as a biochemical tool to trap vRNPs in the nucleus. When H7 was removed from the cells, vRNP export was specifically induced in a CHO cell line stably expressing recombinant M1. Similarly, fusion of cells expressing recombinant M1 from a Semliki Forest virus vector allowed nuclear export of vRNPs. However, export was not rescued when H7 was present in the cells, implying an additional role for phosphorylation in this process. The viral NS2 protein was undetectable in these systems. We conclude that influenza virus M1 is required to induce vRNP nuclear export but that cellular phosphorylation is an additional factor.  相似文献   

19.
A short model genome RNA and also the genome RNA of influenza A virus bearing both 5′- and 3′-terminal common sequences activated the interferon-induced double-stranded-RNA-dependent protein kinase, PKR, by stimulating autophosphorylation in vitro. The activated PKR catalyzed phosphorylation of the alpha subunit of eucaryotic translation initiation factor 2 (eIF2α). The NS1 protein efficiently eliminated the PKR-activating activity of these RNAs by binding to them. Two mutant NS1 proteins, each harboring a single amino acid substitution at different regions, exhibited temperature sensitivity in their RNA binding activity in the mutant virus-infected cell lysates as well as when they were prepared as fusion proteins expressed in bacteria. The virus strains carrying these mutant NS1 proteins exhibited temperature sensitivity in virus protein synthesis at the translational level, as reported previously, and could not repress the autophosphorylation of PKR developing during the virus growth, which is normally suppressed by a viral function(s). As a result, the level of eIF2α phosphorylation was elevated 2.5- to 3-fold. The defect in virus protein synthesis was well correlated with the level of phosphorylation of PKR and eIF2α.  相似文献   

20.
Kim S  Welsch C  Yi M  Lemon SM 《Journal of virology》2011,85(13):6645-6656
Although hepatitis C virus (HCV) assembly remains incompletely understood, recent studies with the genotype 2a JFH-1 strain suggest that it is dependent upon the phosphorylation of Ser residues near the C terminus of NS5A, a multifunctional nonstructural protein. Since genotype 1 viruses account for most HCV disease yet differ substantially in sequence from that of JFH-1, we studied the role of NS5A in the production of the H77S virus. While less efficient than JFH-1, genotype 1a H77S RNA produces infectious virus when transfected into permissive Huh-7 cells. The exchange of complete NS5A sequences between these viruses was highly detrimental to replication, while exchanges of the C-terminal domain III sequence (46% amino acid sequence identity) were well tolerated, with little effect on RNA synthesis. Surprisingly, the placement of the H77S domain III sequence into JFH-1 resulted in increased virus yields; conversely, H77S yields were reduced by the introduction of domain III from JFH-1. These changes in infectious virus yield correlated well with changes in the abundance of NS5A in RNA-transfected cells but not with RNA replication or core protein expression levels. Alanine replacement mutagenesis of selected Ser and Thr residues in the C-terminal domain III sequence revealed no single residue to be essential for infectious H77S virus production. However, virus production was eliminated by Ala substitutions at multiple residues and could be restored by phosphomimetic Asp substitutions at these sites. Thus, despite low overall sequence homology, the production of infectious virus is regulated similarly in JFH-1 and H77S viruses by a conserved function associated with a C-terminal Ser/Thr cluster in domain III of NS5A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号