共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
SARS冠状病毒M蛋白的生物信息学研究 总被引:2,自引:0,他引:2
针对GenBank上发布的来自不同国家地区的39条SARSCoV推测M蛋白,采用生物信息学软件分析其核酸和氨基酸序列,获得其分子生物学特征,确定突变位点,预测功能结构区、Motif及抗原决定簇,比较基因突变对这些功能结构的影响.结果表明:在39个病毒株M蛋白的666 bp中,共有18个病毒株在7个位点上发生了25次变异.在M蛋白序列上预测获得3个跨膜螺旋序列和一个可能的信号肽序列.氨基酸序列的变异主要发生在其跨膜和胞外区域,胞内区域相对较少.预测发现12个Motif和7个抗原决定簇.提示突变对M蛋白的结构功能区的影响不大,也未造成M蛋白的Motif的数量和构成发生改变.对抗原决定簇的影响也主要体现在序列成分构成的改变上,在设计疫苗时,应考虑由其导致的抗原特性改变. 相似文献
8.
Adeyemi O. Adedeji William Severson Colleen Jonsson Kamalendra Singh Susan R. Weiss Stefan G. Sarafianos 《Journal of virology》2013,87(14):8017-8028
Severe acute respiratory syndrome (SARS) is an infectious and highly contagious disease that is caused by SARS coronavirus (SARS-CoV) and for which there are currently no approved treatments. We report the discovery and characterization of small-molecule inhibitors of SARS-CoV replication that block viral entry by three different mechanisms. The compounds were discovered by screening a chemical library of compounds for blocking of entry of HIV-1 pseudotyped with SARS-CoV surface glycoprotein S (SARS-S) but not that of HIV-1 pseudotyped with vesicular stomatitis virus surface glycoprotein G (VSV-G). Studies on their mechanisms of action revealed that the compounds act by three distinct mechanisms: (i) SSAA09E2 {N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide} acts through a novel mechanism of action, by blocking early interactions of SARS-S with the receptor for SARS-CoV, angiotensin converting enzyme 2 (ACE2); (ii) SSAA09E1 {[(Z)-1-thiophen-2-ylethylideneamino]thiourea} acts later, by blocking cathepsin L, a host protease required for processing of SARS-S during viral entry; and (iii) SSAA09E3 [N-(9,10-dioxo-9,10-dihydroanthracen-2-yl)benzamide] also acts later and does not affect interactions of SARS-S with ACE2 or the enzymatic functions of cathepsin L but prevents fusion of the viral membrane with the host cellular membrane. Our work demonstrates that there are at least three independent strategies for blocking SARS-CoV entry, validates these mechanisms of inhibition, and introduces promising leads for the development of SARS therapeutics. 相似文献
9.
Susanna K. P. Lau Yun Feng Honglin Chen Hayes K. H. Luk Wei-Hong Yang Kenneth S. M. Li Yu-Zhen Zhang Yi Huang Zhi-Zhong Song Wang-Ngai Chow Rachel Y. Y. Fan Syed Shakeel Ahmed Hazel C. Yeung Carol S. F. Lam Jian-Piao Cai Samson S. Y. Wong Jasper F. W. Chan Kwok-Yung Yuen Hai-Lin Zhang Patrick C. Y. Woo 《Journal of virology》2015,89(20):10532-10547
10.
11.
Xing-Lou Yang Ben Hu Bo Wang Mei-Niang Wang Qian Zhang Wei Zhang Li-Jun Wu Xing-Yi Ge Yun-Zhi Zhang Peter Daszak Lin-Fa Wang Zheng-Li Shi 《Journal of virology》2016,90(6):3253-3256
We report the isolation and characterization of a novel bat coronavirus which is much closer to the severe acute respiratory syndrome coronavirus (SARS-CoV) in genomic sequence than others previously reported, particularly in its S gene. Cell entry and susceptibility studies indicated that this virus can use ACE2 as a receptor and infect animal and human cell lines. Our results provide further evidence of the bat origin of the SARS-CoV and highlight the likelihood of future bat coronavirus emergence in humans. 相似文献
12.
冠状病毒是引起广州地区严重急性呼吸综合征(SARS)的主要病因 总被引:3,自引:0,他引:3
为查找引起广州地区流行的严重急性呼吸综合征(SARS)的病原体,采集患者漱口液及尸解标本,用组织培养法接种人胚肺细胞、MDCK细胞、Hep-2细胞和鸡胚分离病毒,用间接免疫荧光法检测患者恢复期血清lgG抗体,确定分离的病原是SARS的主要病因,再用套式RT—PCR、免疫电镜法鉴定病原。结果用人胚肺、Hep-2细胞在75份漱口液和3例尸解组织中分离出13株病原体,经套式RT—PCR扩增出110bp的特异产物,经测序证实为冠状病毒。制备冠状病毒的抗原,检测30份SARS病人恢复期血,其中26份血清lgG抗体阳性。同时检测30份普通发热病人血清作对照,IgG抗体全部阴性。由此证明,经组织培养分离到的病原体是引起SARS的致病因子,用分子生物学方法测序后证实为冠状病毒。 相似文献
13.
Chunmei Li Yifei Qi Xin Teng Zongchang Yang Ping Wei Changsheng Zhang Lei Tan Lu Zhou Ying Liu Luhua Lai 《The Journal of biological chemistry》2010,285(36):28134-28140
The 3C-like proteinase (3CLpro) of the severe acute respiratory syndrome (SARS) coronavirus plays a vital role in virus maturation and is proposed to be a key target for drug design against SARS. Various in vitro studies revealed that only the dimer of the matured 3CLpro is active. However, as the internally encoded 3CLpro gets matured from the replicase polyprotein by autolytic cleavage at both the N-terminal and the C-terminal flanking sites, it is unclear whether the polyprotein also needs to dimerize first for its autocleavage reaction. We constructed a large protein containing the cyan fluorescent protein (C), the N-terminal flanking substrate peptide of SARS 3CLpro (XX), SARS 3CLpro (3CLP), and the yellow fluorescent protein (Y) to study the autoprocessing of 3CLpro using fluorescence resonance energy transfer. In contrast to the matured 3CLpro, the polyprotein, as well as the one-step digested product, 3CLP-Y-His, were shown to be monomeric in gel filtration and analytic ultracentrifuge analysis. However, dimers can still be induced and detected when incubating these large proteins with a substrate analog compound in both chemical cross-linking experiments and analytic ultracentrifuge analysis. We also measured enzyme activity under different enzyme concentrations and found a clear tendency of substrate-induced dimer formation. Based on these discoveries, we conclude that substrate-induced dimerization is essential for the activity of SARS-3CLpro in the polyprotein, and a modified model for the 3CLpro maturation process was proposed. As many viral proteases undergo a similar maturation process, this model might be generally applicable. 相似文献
14.
Carly Page Lindsay Goicochea Krystal Matthews Yong Zhang Peter Klover Michael J. Holtzman Lothar Hennighausen Matthew Frieman 《Journal of virology》2012,86(24):13334-13349
Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1−/− mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6−/− double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA macrophages by STAT1 is critical to regulating immune pathologies and for protection from long-term progression to fibrotic lung disease in a mouse model of SARS-CoV infection. 相似文献
15.
Masaya Fukushi Yoshiyuki Yoshinaka Yusuke Matsuoka Seisuke Hatakeyama Yukihito Ishizaka Teruo Kirikae Takehiko Sasazuki Tohru Miyoshi-Akiyama 《Journal of virology》2012,86(21):11745-11753
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV. 相似文献
16.
Yanchen Zhou Kai Lu Susanne Pfefferle Stephanie Bertram Ilona Glowacka Christian Drosten Stefan P?hlmann Graham Simmons 《Journal of virology》2010,84(17):8753-8764
Mannose-binding lectin (MBL) is a serum protein that plays an important role in host defenses as an opsonin and through activation of the complement system. The objective of this study was to assess the interactions between MBL and severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein (SARS-S). MBL was found to selectively bind to retroviral particles pseudotyped with SARS-S. Unlike several other viral envelopes to which MBL can bind, both recombinant and plasma-derived human MBL directly inhibited SARS-S-mediated viral infection. Moreover, the interaction between MBL and SARS-S blocked viral binding to the C-type lectin, DC-SIGN. Mutagenesis indicated that a single N-linked glycosylation site, N330, was critical for the specific interactions between MBL and SARS-S. Despite the proximity of N330 to the receptor-binding motif of SARS-S, MBL did not affect interactions with the ACE2 receptor or cathepsin L-mediated activation of SARS-S-driven membrane fusion. Thus, binding of MBL to SARS-S may interfere with other early pre- or postreceptor-binding events necessary for efficient viral entry.A novel coronavirus (CoV), severe acute respiratory syndrome-CoV (SARS-CoV), is the causal agent of severe acute respiratory syndrome, which afflicted thousands of people worldwide in 2002 and 2003 (10, 39). SARS-CoV is an enveloped, single- and positive-strand RNA virus that encodes four major structural proteins: S, spike glycoprotein (GP); E, envelope protein; M, membrane glycoprotein; and N, nucleocapsid protein (46, 55). Similar to other coronaviruses, the S glycoprotein of the virus mediates the initial attachment of the virus to host cell receptors, angiotensin-converting enzyme 2 (ACE2) (44) and/or DC-SIGNR (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-related molecule; also CD209L or L-SIGN[liver/lymph node-SIGN]) (32) and subsequent fusion of the viral and cellular membranes to allow viral entry into susceptible target cells. The S glycoprotein of SARS-CoV (SARS-S) is a 1,255-amino-acid (aa) type I membrane glycoprotein (46) with 23 potential N-linked glycosylation sites (55). The S glycoproteins of some coronaviruses are translated as a large polypeptide that is subsequently proteolytically cleaved into two functional subunits, S1 (harboring the receptor-binding domain [RBD]) and S2 (containing the membrane fusion domains) (1, 31, 51), during biogenesis, but others are not. The S glycoprotein on mature SARS-CoV virions does not appear to be cleaved (50, 61), but sequence alignments with other coronavirus S glycoproteins allow definition of S1 and S2 regions (46, 55). More recently, studies showed the proteolysis of the S glycoprotein of SARS-CoV on mature virions by cathepsin L (CTSL) (28, 59), as well as trypsin (43, 61) and factor Xa (11), suggesting that a critical cleavage event may occur during cell entry rather than during virion biogenesis.Mannose-binding lectin (MBL; also known as mannose-binding or mannan-binding protein [MBP]) is a Ca2+-dependent (C-type) serum lectin that plays an important role in innate immunity by binding to carbohydrates on the surface of a wide range of pathogens (including bacteria, viruses, fungi, and protozoa) (8, 14, 18), where it activates the complement system or acts directly as an opsonin (30, 40, 52). In order to activate the complement system, MBL must be in complex with a group of MBL-associated serine proteases (MASPs), MASP-1, -2, and -3. Currently, only the role of MASP-2 in complement activation has been clearly defined (65). The MBL-MASP-2 complex cleaves C4 and C2 to form C3 convertase (C4bC2a), which, in turn, activates the downstream complement cascade. MBL is a pattern recognition molecule (9), and surface recognition is mediated through its C-terminal carbohydrate recognition domains (CRDs), which are linked to collagenous stems by a short coiled-coil of alpha-helices. MBL is a mixture of oligomers assembled from subunits that are formed from three identical polypeptide chains (9) and usually has two to six clusters of CRDs. Within each of the clusters, the carbohydrate-binding sites have a fixed orientation, which allows selective recognition of patterns of carbohydrate residues on the surfaces of a wide range of microorganisms (8, 14, 18). The concentration of MBL in the serum varies greatly and is affected by mutations of the promoter and coding regions of the human MBL gene (45). MBL deficiency is associated with susceptibility to various infections, as well as autoimmune, metabolic, and cardiovascular diseases, although MBL-deficient individuals are generally healthy (13, 37, 67).There are conflicting results with regard to the role of MBL in SARS-CoV infection (29, 42, 72, 73). While the association of MBL gene polymorphisms with susceptibility to SARS-CoV infection was reported in some studies (29, 73), Yuan et al. demonstrated that there were no significant differences in MBL genotypes and allele frequencies among SARS patients and controls (72). Ip et al. observed binding to, and inhibition of, SARS-CoV by MBL (29). However, in other studies, no binding of MBL to purified SARS-CoV S glycoprotein was detected (42).In this study, retroviral particles pseudotyped with SARS-S and in vitro assays were used to characterize the role of MBL in SARS-CoV infection. The data indicated that MBL selectively bound to SARS-S and mediated inhibition of viral infection in susceptible cell lines. Moreover, we identified a single N-linked glycosylation site, N330, on SARS-S that is critical for the specific interactions with MBL. 相似文献
17.
目的:研究严重急性呼吸系统综合征冠状病毒(SARS-CoV)N蛋白对甘油三酯和总胆固醇含量的影响。方法:检测分析144例SARS患者甘油三脂和总胆固醇含量在发病后的变化;将小鼠随机分组,分别注射生理盐水和SARS-CoV N蛋白,连续给药9 d后检测小鼠血清中甘油三酯和总胆固醇含量的变化。结果:SARS患者的甘油三酯和总胆固醇含量随发病时间有升高变化(P0.05),在发病40 d前后甘油三酯和总胆固醇含量超标的病例数占本时间段内的病例数的比例显著高于其他时间段,而且超标的含量也明显升高。SARS-CoV N蛋白使小鼠体重明显高于对照组(P0.05),甘油三酯含量在39和51 d明显高于对照组(P0.05),总胆固醇含量在21和39 d也明显高于对照组(P0.05)。结论:SARS-CoV N蛋白可以升高小鼠的甘油三酯和总胆固醇的含量,其升高最为明显的时间段与SARS患者的甘油三酯和总胆固醇含量升高的时间段基本一致。由此推测,SARS-CoV N蛋白可能是促使SARS患者发病后甘油三酯和总胆固醇含量升高的重要原因。 相似文献
18.
Early Upregulation of Acute Respiratory Distress Syndrome-Associated Cytokines Promotes Lethal Disease in an Aged-Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Infection
下载免费PDF全文

Barry Rockx Tracey Baas Gregory A. Zornetzer Bart Haagmans Timothy Sheahan Matthew Frieman Matthew D. Dyer Thomas H. Teal Sean Proll Judith van den Brand Ralph Baric Michael G. Katze 《Journal of virology》2009,83(14):7062-7074
19.
Early Upregulation of Acute Respiratory Distress Syndrome-Associated Cytokines Promotes Lethal Disease in an Aged-Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Infection
下载免费PDF全文

Barry Rockx Tracey Baas Gregory A. Zornetzer Bart Haagmans Timothy Sheahan Matthew Frieman Matthew D. Dyer Thomas H. Teal Sean Proll Judith van den Brand Ralph Baric Michael G. Katze 《Journal of virology》2009,83(17):9022
20.
Kei Ohnuma Bart L. Haagmans Ryo Hatano V. Stalin Raj Huihui Mou Satoshi Iwata Nam H. Dang Berend Jan Bosch Chikao Morimoto 《Journal of virology》2013,87(24):13892-13899
We identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also significantly inhibited infection. These findings indicate that both 2F9 and YS110 are potential therapeutic agents for MERS-CoV infection. YS110, in particular, is a good candidate for immediate testing as a therapeutic modality for MERS. 相似文献