首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most secretory proteins are folded and modified in the endoplasmic reticulum (ER); however, protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae.  相似文献   

2.
ER signaling in unfolded protein response   总被引:11,自引:0,他引:11  
Kaneko M  Nomura Y 《Life sciences》2003,74(2-3):199-205
Abnormally folded proteins are susceptible to aggregation and accumulation in cells, ultimately leading to cell death. To protect cells against such dangers, expression of various genes including molecular chaperones can be induced and ER-associated protein degradation (ERAD) activated in response to the accumulation of unfolded protein in the endoplasmic reticulum (ER). This is known as the unfolded protein response (UPR). ERAD requires retrograde transport of unfolded proteins from the ER back to the cytosol via the translocon for degradation by the ubiquitin-proteasome system. Hrd1p is a UPR-induced ER membrane protein that acts as a ubiquitin ligase (E3) in the ERAD system. Hrd3p interacts with and stabilizes Hrd1p. We have isolated and identified human homologs (HRD1 and SEL1/HRD3) of Saccharomyces cerevisiae Hrd1p and Hrd3p. Human HRD1 and SEL1 were up-regulated in response to ER stress and overexpression of human IRE1 and ATF6, which are ER stress-sensor molecules in the ER. HEK293T cells overexpressing HRD1 showed resistance to ER stress-induced cell death. These results suggest that HRD1 and SEL1 are up-regulated by the UPR and contribute to protection against the ER stress-induced cell death by degrading unfolded proteins accumulated in the ER.  相似文献   

3.
The expanded polyglutamine (polyQ) tracts observed in autosomal dominant neurodegenerative disorders have the tendency to form intracellular aggregates, thus enhancing apoptotic cell death and the formation of autophagic vesicles. PolyQ accumulation inhibits the ER-associated degradation system (ERAD) resulting in reduced retrotranslocation from the ER and increased accumulation of misfolded proteins in the lumen of ER. Autophagy is an early cellular defense mechanism associated with ER stress, but prolonged ER stress may induce autophagic cell death, with destruction of cellular components and apoptotic cell death. Endoplasmic reticulum (ER) stress may be the key signal for both of these events.  相似文献   

4.
5.
Accumulation of aberrant proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response pathway that helps the cell to survive under these stress conditions. Herp is a mammalian ubiquitin domain protein, which is strongly induced by the unfolded protein response. It is involved in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We found that upon exposure of cells to ER stress, elevation of Herp steady state levels is accompanied by an enhanced association of Herp with pre-existing Hrd1. Hrd1-associated Herp is rapidly degraded and substituted by de novo synthesized Herp, suggesting a continuous turnover of the protein at Hrd1 complexes. Further analysis revealed the presence of multiple Hrd1 copies in a single complex enabling binding of a variable number of Herp molecules. Efficient ubiquitylation of the Hrd1-specific ERAD substrate α1-antitrypsin null Hong Kong (NHK) required the presence of the Herp UBL domain, which was also necessary for NHK degradation. In summary, we propose that binding of Herp to Hrd1-containing ERAD complexes positively regulates the ubiquitylation activity of these complexes, thus permitting survival of the cell during ER stress.  相似文献   

6.
Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.  相似文献   

7.
8.
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) lumen induces ER stress. Eukaryotic cells possess the ER quality control systems, the unfolded protein response (UPR), to adapt to ER stress. IRE1α is one of the ER stress receptors and mediates the UPR. Here, we identified ubiquitin specific protease (USP) 14 as a binding partner of IRE1α. USP14 interacted with the cytoplasmic region of IRE1α, and the endogenous interaction between USP14 and IRE1α was inhibited by ER stress. Overexpression of USP14 inhibited the ER-associated degradation (ERAD) pathway, and USP14 depletion by small interfering RNA effectively activated ERAD. These findings suggest that USP14 is a novel player in the UPR by serving as a physiological inhibitor of ERAD under the non-stressed condition.  相似文献   

9.
10.
11.
Clearance of misfolded proteins in the endoplasmic reticulum (ER) is traditionally handled by ER-associated degradation (ERAD), a process that requires retro-translocation and ubiquitination mediated by a luminal chaperone network. Here we investigated whether the secreted, glaucoma-associated protein myocilin was processed by this pathway. Myocilin is typically transported through the ER/Golgi network, but inherited mutations in myocilin lead to its misfolding and aggregation within trabecular meshwork cells, and ultimately, ER stress-induced cell death. Using targeted knockdown strategies, we determined that glucose-regulated protein 94 (Grp94), the ER equivalent of heat shock protein 90 (Hsp90), specifically recognizes mutant myocilin, triaging it through ERAD. The addition of mutant myocilin to the short list of Grp94 clients strengthens the hypothesis that β-strand secondary structure drives client association with Grp94. Interestingly, the ERAD pathway is incapable of efficiently handling the removal of mutant myocilin, but when Grp94 is depleted, degradation of mutant myocilin is shunted away from ERAD toward a more robust clearance pathway for aggregation-prone proteins, the autophagy system. Thus ERAD inefficiency for distinct aggregation-prone proteins can be subverted by manipulating ER chaperones, leading to more effective clearance by the autophagic/lysosomal pathway. General Hsp90 inhibitors and a selective Grp94 inhibitor also facilitate clearance of mutant myocilin, suggesting that therapeutic approaches aimed at inhibiting Grp94 could be beneficial for patients suffering from some cases of myocilin glaucoma.  相似文献   

12.
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.  相似文献   

13.
Liu L  Cui F  Li Q  Yin B  Zhang H  Lin B  Wu Y  Xia R  Tang S  Xie Q 《Cell research》2011,21(6):957-969
Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca(2+) release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway.  相似文献   

14.
Summary Newly synthesized polypeptides that enter the endomembrane system encounter a folding environment in the lumen of the endoplasmic reticulum (ER) constituted by enzymes, lectinlike proteins, and molecular chaperones. The folding process is under scrutiny of this abundant catalytic machinery, and failure of the new arrivals to assume a stable and functional conformation is met with targeting to proteolytic destruction, a process which has been termed ER-associated degradation (ERAD). In recent years it became clear that, in most cases, proteolysis appears to take place in the cytosol after retro-translocation of the substrate proteins from the ER, and to depend on the ubiquitin-proteasome pathway. On the other hand, proteolytic activities within the ER that have been widely neglected so far may also contribute to the turnover of proteins delivered to ERAD. Thus, ERAD is being deciphered as a complex process that requires communication-dependent regulated proteolytic activities within both the ER lumen and the cytosol. Here we discuss some recent findings on ERAD and their implications on possible mechanisms involved.Abbreviations lAT alpha-1-antitrypsin - apoB apolipoprotein B - BiP immunoglobulin-heavy-chain-binding protein - CFTR cystic fibrosis transmembrane conductance regulator - CPY carboxypeptidase Y - ER endoplasmic reticulum - ERAD ER associated degradation - HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A - MHC major histocompatibility complex - PDI protein disulflde isomerase - TCR T cell antigen receptor  相似文献   

15.
The 70-kDa heat shock protein (Hsp70) family of molecular chaperones cooperates with cofactors to promote protein folding, assembly of protein complexes and translocation of proteins across membranes. Although many cofactors of cytosolic Hsp70s have been identified, knowledge about cofactors of BiP/Kar2p, an endoplasmic reticulum (ER)-resident Hsp70, is still poor. Here we propose the Saccharomyces cerevisiae protein Rot1p as a possible cofactor of BiP/Kar2p involved in protein folding. Rot1p was found to be an essential, ER-localized membrane protein facing the lumen. ROT1 genetically interacted with several ER chaperone genes including KAR2, and the rot1-2 mutation triggered the unfolded protein response. Rot1p associated with Kar2p, especially under conditions of ER stress, and maturation of a model protein, a reduced form of carboxypeptidaseY, was impaired in a kar2-1 rot1-2 double mutant. These findings suggest that Rot1p participates in protein folding with Kar2p. Morphological analysis of rot1-2 cells revealed cell wall defects and accumulation of autophagic bodies in the vacuole. This implies that the protein folding machinery in which Rot1p is involved chaperones proteins acting in various physiological processes including cell wall synthesis and lysis of autophagic bodies.  相似文献   

16.
A variety of debilitating diseases including diabetes, Alzheimer's, Huntington's, Parkinson's, and prion-based diseases are linked to stress within the endoplasmic reticulum (ER). Using S. cerevisiae, we sought to determine the relationship between protein misfolding, ER stress, and cell death. In the absence of ERV29, a stress-induced gene required for ER associated degradation (ERAD), misfolded proteins accumulate in the ER leading to persistent ER stress and subsequent cell death. Cells alleviate ER stress through the unfolded protein response (UPR); however, if stress is sustained the UPR contributes to cell death by causing the accumulation of reactive oxygen species (ROS). ROS are generated from two sources: the UPR-regulated oxidative folding machinery in the ER and mitochondria. Our results demonstrate a direct mechanism(s) by which misfolded proteins lead to cellular damage and death.  相似文献   

17.
Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins in the ER, elicits an adaptive response, the unfolded protein response (UPR). One component of the UPR, the endoplasmic reticulum-associated protein degradation (ERAD) system, has an important function in the survival of ER stressed cells. Here, we show that HRD1, a component of the ERAD system, is upregulated in pancreatic islets of the Akita diabetes mouse model and enhances intracellular degradation of misfolded insulin. High ER stress in beta-cells stimulated mutant insulin degradation through HRD1 to protect beta-cells from ER stress and ensuing death. If HRD1 serves the same function in humans, it may serve as a target for therapeutic intervention in diabetes.  相似文献   

18.
19.
A functional unfolded protein response (UPR) is essential for endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded secretory proteins, reflecting the fact that some level of UPR activation must exist under normal physiological conditions. A coordinator of the UPR and ERAD processes has long been sought. We previously showed that the PKR-like, ER-localized eukaryotic translation initiation factor 2α kinase branch of the UPR is required for the recruitment of misfolded proteins and the ubiquitin ligase HRD1 to the ER-derived quality control compartment (ERQC), a staging ground for ERAD. Here we show that homocysteine-induced ER protein (Herp), a protein highly upregulated by this UPR branch, is responsible for this compartmentalization. Herp localizes to the ERQC, and our results suggest that it recruits HRD1, which targets to ERAD the substrate presented by the OS-9 lectin at the ERQC. Predicted overall structural similarity of Herp to the ubiquitin-proteasome shuttle hHR23, but including a transmembrane hairpin, suggests that Herp may function as a hub for membrane association of ERAD machinery components, a key organizer of the ERAD complex.  相似文献   

20.
内质网应激反应分子机理研究进展   总被引:21,自引:3,他引:21  
内质网应激是导致心脑组织缺血梗塞、神经退行性疾病等发生的重要环节 .目前发现同型半胱氨酸、氧化应激、钙代谢紊乱等都能引起内质网应激级联反应 ,表现为蛋白质合成暂停、内质网应激蛋白表达和细胞凋亡等 .这些表现包括在未折叠蛋白反应 (UPR)、整合应激反应 (ISR)和内质网相关性死亡 (ERAD)三个相互关联的动态过程中 ,每一过程的分子机理现已逐步被揭示 .作为细胞保护性应对机制的内质网应激体系一旦遭到破坏 ,细胞将不能合成应有的蛋白质 ,亦不能发挥正常的生理功能 ,甚至会出现细胞凋亡 .掌握内质网应激过程对进一步理解多种疾病的发生机理有十分重要的理论意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号