首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based dataset, each of which can be analysed in a few hours on a desktop workstation.  相似文献   

2.
While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.  相似文献   

3.
GWAS have emerged as popular tools for identifying genetic variants that are associated with disease risk. Standard analysis of a case-control GWAS involves assessing the association between each individual genotyped SNP and disease risk. However, this approach suffers from limited reproducibility and difficulties in detecting multi-SNP and epistatic effects. As an alternative analytical strategy, we propose grouping SNPs together into SNP sets on the basis of proximity to genomic features such as genes or haplotype blocks, then testing the joint effect of each SNP set. Testing of each SNP set proceeds via the logistic kernel-machine-based test, which is based on a statistical framework that allows for flexible modeling of epistatic and nonlinear SNP effects. This flexibility and the ability to naturally adjust for covariate effects are important features of our test that make it appealing in comparison to individual SNP tests and existing multimarker tests. Using simulated data based on the International HapMap Project, we show that SNP-set testing can have improved power over standard individual-SNP analysis under a wide range of settings. In particular, we find that our approach has higher power than individual-SNP analysis when the median correlation between the disease-susceptibility variant and the genotyped SNPs is moderate to high. When the correlation is low, both individual-SNP analysis and the SNP-set analysis tend to have low power. We apply SNP-set analysis to analyze the Cancer Genetic Markers of Susceptibility (CGEMS) breast cancer GWAS discovery-phase data.  相似文献   

4.
Genome-wide association studies are revolutionizing the search for the genes underlying human complex diseases. The main decisions to be made at the design stage of these studies are the choice of the commercial genotyping chip to be used and the numbers of case and control samples to be genotyped. The most common method of comparing different chips is using a measure of coverage, but this fails to properly account for the effects of sample size, the genetic model of the disease, and linkage disequilibrium between SNPs. In this paper, we argue that the statistical power to detect a causative variant should be the major criterion in study design. Because of the complicated pattern of linkage disequilibrium (LD) in the human genome, power cannot be calculated analytically and must instead be assessed by simulation. We describe in detail a method of simulating case-control samples at a set of linked SNPs that replicates the patterns of LD in human populations, and we used it to assess power for a comprehensive set of available genotyping chips. Our results allow us to compare the performance of the chips to detect variants with different effect sizes and allele frequencies, look at how power changes with sample size in different populations or when using multi-marker tags and genotype imputation approaches, and how performance compares to a hypothetical chip that contains every SNP in HapMap. A main conclusion of this study is that marked differences in genome coverage may not translate into appreciable differences in power and that, when taking budgetary considerations into account, the most powerful design may not always correspond to the chip with the highest coverage. We also show that genotype imputation can be used to boost the power of many chips up to the level obtained from a hypothetical “complete” chip containing all the SNPs in HapMap. Our results have been encapsulated into an R software package that allows users to design future association studies and our methods provide a framework with which new chip sets can be evaluated.  相似文献   

5.
A great promise of publicly sharing genome-wide association data is the potential to create composite sets of controls. However, studies often use different genotyping arrays, and imputation to a common set of SNPs has shown substantial bias: a problem which has no broadly applicable solution. Based on the idea that using differing genotyped SNP sets as inputs creates differential imputation errors and thus bias in the composite set of controls, we examined the degree to which each of the following occurs: (1) imputation based on the union of genotyped SNPs (i.e., SNPs available on one or more arrays) results in bias, as evidenced by spurious associations (type 1 error) between imputed genotypes and arbitrarily assigned case/control status; (2) imputation based on the intersection of genotyped SNPs (i.e., SNPs available on all arrays) does not evidence such bias; and (3) imputation quality varies by the size of the intersection of genotyped SNP sets. Imputations were conducted in European Americans and African Americans with reference to HapMap phase II and III data. Imputation based on the union of genotyped SNPs across the Illumina 1M and 550v3 arrays showed spurious associations for 0.2 % of SNPs: ~2,000 false positives per million SNPs imputed. Biases remained problematic for very similar arrays (550v1 vs. 550v3) and were substantial for dissimilar arrays (Illumina 1M vs. Affymetrix 6.0). In all instances, imputing based on the intersection of genotyped SNPs (as few as 30 % of the total SNPs genotyped) eliminated such bias while still achieving good imputation quality.  相似文献   

6.
In many case-control genetic association studies, a set of correlated secondary phenotypes that may share common genetic factors with disease status are collected. Examination of these secondary phenotypes can yield valuable insights about the disease etiology and supplement the main studies. However, due to unequal sampling probabilities between cases and controls, standard regression analysis that assesses the effect of SNPs (single nucleotide polymorphisms) on secondary phenotypes using cases only, controls only, or combined samples of cases and controls can yield inflated type I error rates when the test SNP is associated with the disease. To solve this issue, we propose a Gaussian copula-based approach that efficiently models the dependence between disease status and secondary phenotypes. Through simulations, we show that our method yields correct type I error rates for the analysis of secondary phenotypes under a wide range of situations. To illustrate the effectiveness of our method in the analysis of real data, we applied our method to a genome-wide association study on high-density lipoprotein cholesterol (HDL-C), where "cases" are defined as individuals with extremely high HDL-C level and "controls" are defined as those with low HDL-C level. We treated 4 quantitative traits with varying degrees of correlation with HDL-C as secondary phenotypes and tested for association with SNPs in LIPG, a gene that is well known to be associated with HDL-C. We show that when the correlation between the primary and secondary phenotypes is >0.2, the P values from case-control combined unadjusted analysis are much more significant than methods that aim to correct for ascertainment bias. Our results suggest that to avoid false-positive associations, it is important to appropriately model secondary phenotypes in case-control genetic association studies.  相似文献   

7.
Recent studies have indicated that linkage disequilibrium (LD) between single nucleotide polymorphism (SNP) markers can be used to derive a reduced set of tagging SNPs (tSNPs) for genetic association studies. Previous strategies for identifying tSNPs have focused on LD measures or haplotype diversity, but the statistical power to detect disease-associated variants using tSNPs in genetic studies has not been fully characterized. We propose a new approach of selecting tSNPs based on determining the set of SNPs with the highest power to detect association. Two-locus genotype frequencies are used in the power calculations. To show utility, we applied this power method to a large number of SNPs that had been genotyped in Caucasian samples. We demonstrate that a significant reduction in genotyping efforts can be achieved although the reduction depends on genotypic relative risk, inheritance mode and the prevalence of disease in the human population. The tSNP sets identified by our method are remarkably robust to changes in the disease model when small relative risk and additive mode of inheritance are employed. We have also evaluated the ability of the method to detect unidentified SNPs. Our findings have important implications in applying tSNPs from different data sources in association studies.  相似文献   

8.
9.
Marginal tests based on individual SNPs are routinely used in genetic association studies. Studies have shown that haplotype‐based methods may provide more power in disease mapping than methods based on single markers when, for example, multiple disease‐susceptibility variants occur within the same gene. A limitation of haplotype‐based methods is that the number of parameters increases exponentially with the number of SNPs, inducing a commensurate increase in the degrees of freedom and weakening the power to detect associations. To address this limitation, we introduce a hierarchical linkage disequilibrium model for disease mapping, based on a reparametrization of the multinomial haplotype distribution, where every parameter corresponds to the cumulant of each possible subset of a set of loci. This hierarchy present in the parameters enables us to employ flexible testing strategies over a range of parameter sets: from standard single SNP analyses through the full haplotype distribution tests, reducing degrees of freedom and increasing the power to detect associations. We show via extensive simulations that our approach maintains the type I error at nominal level and has increased power under many realistic scenarios, as compared to single SNP and standard haplotype‐based studies. To evaluate the performance of our proposed methodology in real data, we analyze genome‐wide data from the Wellcome Trust Case‐Control Consortium.  相似文献   

10.
The rough draft of the human genome map has been used to identify most of the functional genes in the human genome, as well as to identify nucleotide variations, known as "single-nucleotide polymorphisms" (SNPs), in these genes. By use of advanced biotechnologies, researchers are beginning to genotype thousands of SNPs from biological samples. Among the many possible applications, one of them is the study of SNP associations with complex human diseases, such as cancers or coronary heart diseases, by using a case-control study design. Through the gathering of environmental risk factors and other lifestyle factors, such a study can be effectively used to investigate interactions between genes and environmental factors in their associations with disease phenotype. Earlier, we developed a method to statistically construct individuals' haplotypes and to estimate the distribution of haplotypes of multiple SNPs in a defined population, by use of estimating-equation techniques. Extending this idea, we describe here an analytic method for assessing the association between the constructed haplotypes along with environmental factors and the disease phenotype. This method is also robust to the model assumptions and is scalable to a large number of SNPs. Asymptotic properties of estimations in the method are proved theoretically and are tested for finite sample sizes by use of simulations. To demonstrate the use of the method, we applied it to assess the possible association between apolipoprotein CIII (six coding SNPs) and restenosis by using a case-control data set. Our analysis revealed two haplotypes that may reduce the risk of restenosis.  相似文献   

11.
Basu S  Pan W  Oetting WS 《Human heredity》2011,71(4):234-245
Studying one locus or one single nucleotide polymorphism (SNP) at a time may not be sufficient to understand complex diseases because they are unlikely to result from the effect of only one SNP. Each SNP alone may have little or no effect on the risk of the disease, but together they may increase the risk substantially. Analyses focusing on individual SNPs ignore the possibility of interaction among SNPs. In this paper, we propose a parsimonious model to assess the joint effect of a group of SNPs in a case-control study. The model implements a data reduction strategy within a likelihood framework and uses a test to assess the statistical significance of the effect of the group of SNPs on the binary trait. The primary advantage of the proposed approach is that the dimension reduction technique produces a test statistic with degrees of freedom significantly lower than a multiple logistic regression with only main effects of the SNPs, and our parsimonious model can incorporate the possibility of interaction among the SNPs. Moreover, the proposed approach estimates the direction of association of each SNP with the disease and provides an estimate of the average effect of the group of SNPs positively and negatively associated with the disease in the given SNP set. We illustrate the proposed model on simulated and real data, and compare its performance with a few other existing approaches. Our proposed approach appeared to outperform the other approaches for independent SNPs in our simulation studies.  相似文献   

12.
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases.  相似文献   

13.
Large-scale whole genome association studies are increasingly common, due in large part to recent advances in genotyping technology. With this change in paradigm for genetic studies of complex diseases, it is vital to develop valid, powerful, and efficient statistical tools and approaches to evaluate such data. Despite a dramatic drop in genotyping costs, it is still expensive to genotype thousands of individuals for hundreds of thousands single nucleotide polymorphisms (SNPs) for large-scale whole genome association studies. A multi-stage (or two-stage) design has been a promising alternative: in the first stage, only a fraction of samples are genotyped and tested using a dense set of SNPs, and only a small subset of markers that show moderate associations with the disease will be genotyped in later stages. Multi-stage designs have also been used in candidate gene association studies, usually in regions that have shown strong signals by linkage studies. To decide which set of SNPs to be genotyped in the next stage, a common practice is to utilize a simple test (such as a chi2 test for case-control data) and a liberal significance level without corrections for multiple testing, to ensure that no true signals will be filtered out. In this paper, I have developed a novel SNP selection procedure within the framework of multi-stage designs. Based on data from stage 1, the method explicitly explores correlations (linkage disequilibrium) among SNPs and their possible interactions in determining the disease phenotype. Comparing with a regular multi-stage design, the approach can select a much reduced set of SNPs with high discriminative power for later stages. Therefore, not only does it reduce the genotyping cost in later stages, it also increases the statistical power by reducing the number of tests. Combined analysis is proposed to further improve power, and the theoretical significance level of the combined statistic is derived. Extensive simulations have been performed, and results have shown that the procedure can reduce the number of SNPs required in later stages, with improved power to detect associations. The procedure has also been applied to a real data set from a genome-wide association study of the sporadic amyotrophic lateral sclerosis (ALS) disease, and an interesting set of candidate SNPs has been identified.  相似文献   

14.
OBJECTIVE: Cohort and case-control genetic association studies offer the greatest power to detect small genotypic influences on disease phenotypes, relative to family-based designs. However, genetic subdivisions could confound studies involving unrelated individuals, but the topic has been little investigated. We examined geographical and interallelic association of SNP and microsatellite haplotypes of the Y chromosome, of regions of chromosome 11, and of autosomal SNP genotypes relevant to cardiovascular risk traits in a UK-wide epidemiological survey. RESULTS: We show evidence (p = 0.00001) of the Danelaw history of the UK, marked by a two-fold excess of a Viking Y haplotype in central England. We also found evidence for a (different) single-centre geographical over-representation of one haplotype, both for APOC3-A4-A5 and for IGF2. The basis of this remains obscure but neither reflect genotyping error nor correlate with the phenotypic associations by centre of these markers. A panel of SNPs relevant to cardiovascular risks traits showed neither association with geographical location nor with Y haplotypes. CONCLUSION: Combinations of Y haplotyping, autosomal haplotyping, and genome-wide SNP typing, taken together with phenotypic2 associations, should improve epidemiological recognition and interpretation of possible confounding by genetic subdivision.  相似文献   

15.
Copy-number variation (CNV) is a major contributor to human genetic variation. Recently, CNV associations with human disease have been reported. Many genome-wide association (GWA) studies in complex diseases have been performed with sets of biallelic single-nucleotide polymorphisms (SNPs), but the available CNV methods are still limited. We present a new method (TriTyper) that can infer genotypes in case-control data sets for deletion CNVs, or SNPs with an extra, untyped allele at a high-resolution single SNP level. By accounting for linkage disequilibrium (LD), as well as intensity data, calling accuracy is improved. Analysis of 3102 unrelated individuals with European descent, genotyped with Illumina Infinium BeadChips, resulted in the identification of 1880 SNPs with a common untyped allele, and these SNPs are in strong LD with neighboring biallelic SNPs. Simulations indicate our method has superior power to detect associations compared to biallelic SNPs that are in LD with these SNPs, yet without increasing type I errors, as shown in a GWA analysis in celiac disease. Genotypes for 1204 triallelic SNPs could be fully imputed, with only biallelic-genotype calls, permitting association analysis of these SNPs in many published data sets. We estimate that 682 of the 1655 unique loci reflect deletions; this is on average 99 deletions per individual, four times greater than those detected by other methods. Whereas the identified loci are strongly enriched for known deletions, 61% have not been reported before. Genes overlapping with these loci more often have paralogs (p = 0.006) and biologically interact with fewer genes than expected (p = 0.004).  相似文献   

16.
Statistical methods to test for effects of single nucleotide polymorphisms (SNPs) on exon inclusion exist but often rely on testing of associations between multiple exon–SNP pairs, with sometimes subsequent summarization of results at the gene level. Such approaches require heavy multiple testing corrections and detect mostly events with large effect sizes. We propose here a test to find spliceQTL (splicing quantitative trait loci) effects that takes all exons and all SNPs into account simultaneously. For any chosen gene, this score-based test looks for an association between the set of exon expressions and the set of SNPs, via a random-effects model framework. It is efficient to compute and can be used if the number of SNPs is larger than the number of samples. In addition, the test is powerful in detecting effects that are relatively small for individual exon–SNP pairs but are observed for many pairs. Furthermore, test results are more often replicated across datasets than pairwise testing results. This makes our test more robust to exon–SNP pair-specific effects, which do not extend to multiple pairs within the same gene. We conclude that the test we propose here offers more power and better replicability in the search for spliceQTL effects.  相似文献   

17.
《PloS one》2012,7(12)
A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers.  相似文献   

18.
Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%–20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.  相似文献   

19.
A susceptibility locus for coronary artery disease (CAD) has been mapped to chromosome 3q13-21 in a linkage study of early-onset CAD. We completed an association-mapping study across the 1-LOD-unit-down supporting interval, using two independent white case-control data sets (CATHGEN, initial and validation) to evaluate association under the peak. Single-nucleotide polymorphisms (SNPs) evenly spaced at 100-kb intervals were screened in the initial data set (N=468). Promising SNPs (P<.1) were then examined in the validation data set (N=514). Significant findings (P<.05) in the combined initial and validation data sets were further evaluated in multiple independent data sets, including a family-based data set (N=2,954), an African American case-control data set (N=190), and an additional white control data set (N=255). The association between genotype and aortic atherosclerosis was examined in 145 human aortas. The peakwide survey found evidence of association in SNPs from multiple genes. The strongest associations were found in three SNPs from the kalirin (KALRN) gene, especially in patients with early-onset CAD (P=.00001-00028 in the combined CATHGEN data sets). In-depth investigation of the gene found that an intronic SNP, rs9289231, was associated with early-onset CAD in all white data sets examined (P<.05). In the joint analysis of all white early-onset CAD cases (N=332) and controls (N=546), rs9289231 was highly significant (P=.00008), with an odds-ratio estimate of 2.1. Furthermore, the risk allele of this SNP was associated with atherosclerosis burden (P=.03) in 145 human aortas. KALRN is a protein with many functions, including the inhibition of inducible nitric oxide synthase and guanine-exchange-factor activity. KALRN and two other associated genes identified in this study (CDGAP and MYLK) belong to the Rho GTPase-signaling pathway. Our data suggest the importance of the KALRN gene and the Rho GTPase-signaling pathway in the pathogenesis of CAD.  相似文献   

20.
We report the development and validation of experimental methods, study designs, and analysis software for pooling-based genomewide association (GWA) studies that use high-throughput single-nucleotide-polymorphism (SNP) genotyping microarrays. We first describe a theoretical framework for establishing the effectiveness of pooling genomic DNA as a low-cost alternative to individually genotyping thousands of samples on high-density SNP microarrays. Next, we describe software called "GenePool," which directly analyzes SNP microarray probe intensity data and ranks SNPs by increased likelihood of being genetically associated with a trait or disorder. Finally, we apply these methods to experimental case-control data and demonstrate successful identification of published genetic susceptibility loci for a rare monogenic disease (sudden infant death with dysgenesis of the testes syndrome), a rare complex disease (progressive supranuclear palsy), and a common complex disease (Alzheimer disease) across multiple SNP genotyping platforms. On the basis of these theoretical calculations and their experimental validation, our results suggest that pooling-based GWA studies are a logical first step for determining whether major genetic associations exist in diseases with high heritability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号