首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The precise assembly of the highly organized filament systems found in muscle is critically important for its function. It has been hypothesized that nebulin, a giant filamentous protein extending along the entire length of the thin filament, provides a blueprint for muscle thin filament assembly. To test this hypothesis, we generated a KO mouse model to investigate nebulin functions in vivo. Nebulin KO mice assemble thin filaments of reduced lengths and approximately 15% of their Z-disks are abnormally wide. Our data demonstrate that nebulin functions in vivo as a molecular ruler by specifying pointed- and barbed-end thin filament capping. Consistent with the shorter thin filament length of nebulin deficient mice, maximal active tension was significantly reduced in KO animals. Phenotypically, the murine model recapitulates human nemaline myopathy (NM), that is, the formation of nemaline rods combined with severe skeletal muscle weakness. The myopathic changes in the nebulin KO model include depressed contractility, loss of myopalladin from the Z-disk, and dysregulation of genes involved in calcium homeostasis and glycogen metabolism; features potentially relevant for understanding human NM.  相似文献   

2.
Nemaline myopathy (NM) is a rare congenital muscle disorder primarily affecting skeletal muscles that results in neonatal death in severe cases as a result of associated respiratory insufficiency. NM is thought to be a disease of sarcomeric thin filaments as six of eight known genes whose mutation can cause NM encode components of that structure, however, recent discoveries of mutations in non-thin filament genes has called this model in question. We performed whole-exome sequencing and have identified recessive small deletions and missense changes in the Kelch-like family member 41 gene (KLHL41) in four individuals from unrelated NM families. Sanger sequencing of 116 unrelated individuals with NM identified compound heterozygous changes in KLHL41 in a fifth family. Mutations in KLHL41 showed a clear phenotype-genotype correlation: Frameshift mutations resulted in severe phenotypes with neonatal death, whereas missense changes resulted in impaired motor function with survival into late childhood and/or early adulthood. Functional studies in zebrafish showed that loss of Klhl41 results in highly diminished motor function and myofibrillar disorganization, with nemaline body formation, the pathological hallmark of NM. These studies expand the genetic heterogeneity of NM and implicate a critical role of BTB-Kelch family members in maintenance of sarcomeric integrity in NM.  相似文献   

3.
Nemaline myopathy (NM) is a congenital myopathy characterized by muscle weakness and nemaline bodies in affected myofibers. Five NM genes, all encoding components of the sarcomeric thin filament, are known. We report identification of a sixth gene, CFL2, encoding the actin-binding protein muscle cofilin-2, which is mutated in two siblings with congenital myopathy. The proband’s muscle contained characteristic nemaline bodies, as well as occasional fibers with minicores, concentric laminated bodies, and areas of F-actin accumulation. Her affected sister’s muscle was reported to exhibit nonspecific myopathic changes. Cofilin-2 levels were significantly lower in the proband’s muscle, and the mutant protein was less soluble when expressed in Escherichia coli, suggesting that deficiency of cofilin-2 may result in reduced depolymerization of actin filaments, causing their accumulation in nemaline bodies, minicores, and, possibly, concentric laminated bodies.  相似文献   

4.
Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle alpha-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle alpha-skeletal actin account for the disease in approximately 15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and "whorling" of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that alpha-actin genotype is not the sole determinant of phenotype.  相似文献   

5.
Mutations in human alpha-skeletal actin have been implicated in causing congenital nemaline myopathy, a disease characterized histopathologically by nemaline bodies in skeletal muscle and manifested in the patient as skeletal muscle weakness. Here we investigate the functional effects of three severe nemaline myopathy mutations (V43F, A138P, and R183G) in human alpha-skeletal actin. Wild-type and mutant actins were expressed and purified from the baculovirus/insect cell expression system. The mutations are located in different subdomains of actin; Val-43 is located in a flexible loop of subdomain 2, Ala-138 is near a hydrophobic cleft in the "hinge" region between subdomains 1 and 3, and Arg-183 is near the nucleotide-binding site. None of the three mutations affected the folding of the actin monomer, the velocity at which skeletal myosin moves actin in an in vitro motility assay, or the relative average isometric force supported by F-actin. Defects in fundamental actomyosin interactions are, therefore, unlikely to account for the muscle weakness observed in affected patients. There were, however, significant changes observed in the polymerization kinetics of V43F and A138P and in the rate of nucleotide release for V43F. No detectable defect was found for R183G. If these subtle changes in polymerization observed in vitro are amplified in the context of the sarcomere, it could in principle be one of the primary insults that triggers the development of nemaline myopathy.  相似文献   

6.
Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.  相似文献   

7.
The nemaline myopathies are characterized by weakness and eosinophilic, rodlike (nemaline) inclusions in muscle fibers. Amish nemaline myopathy is a form of nemaline myopathy common among the Old Order Amish. In the first months of life, affected infants have tremors with hypotonia and mild contractures of the shoulders and hips. Progressive worsening of the proximal contractures, weakness, and a pectus carinatum deformity develop before the children die of respiratory insufficiency, usually in the second year. The disorder has an incidence of approximately 1 in 500 among the Amish, and it is inherited in an autosomal recessive pattern. Using a genealogy database, automated pedigree software, and linkage analysis of DNA samples from four sibships, we identified an approximately 2-cM interval on chromosome 19q13.4 that was homozygous in all affected individuals. The gene for the sarcomeric thin-filament protein, slow skeletal muscle troponin T (TNNT1), maps to this interval and was sequenced. We identified a stop codon in exon 11, predicted to truncate the protein at amino acid 179, which segregates with the disease. We conclude that Amish nemaline myopathy is a distinct, heritable, myopathic disorder caused by a mutation in TNNT1.  相似文献   

8.
The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension–pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring ktr (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased ktr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.  相似文献   

9.
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.  相似文献   

10.
A biopsy of skeletal muscle taken from a child with the clinical symptoms of congenital nemaline myopathy was studied. Light and electron microscopy revealed rod-like structures within the muscle fibres, and thus confirmed the clinical diagnosis. Indirect immunofluorescence, using specific antibodies against actin and desmin (both derived from chicken gizzard) as well as against α-actinin and tropomyosin (both from porcine skeletal muscle) revealed that the rods consist of massive accumulations of α-actinin. Desmin seems to be peripherally associated with the rods. Anti-actin and anti-tropomyosin did not stain the rods; however, a masking effect could not be ruled out. These findings support previous hypotheses that nemaline rods can be taken to be lateral-polymers of normal Z-disks.  相似文献   

11.
We have previously reported a Met9Arg mutation in the human skeletal muscle alpha tropomyosin gene (TPM3) associated with autosomal dominant nemaline myopathy [Nat. Genet. 9 (1995) 75]. We describe here the generation of wild-type (Wt-tpm3) and Met9Arg (M9R-tpm3) mutant human skeletal muscle slow alpha tropomyosin using the Baculovirus expression vector system (BEVS). This system produces correct posttranslationally modified recombinant tropomyosin proteins in insect cells. We show that the interactions of Wt-tpm3 with actin and tropomyosin are comparable to those of fast alpha tropomyosin isolated from chicken striated muscle. However, the recombinant M9R-tpm3 is at least 100 times less effective at binding actin than Wt-tpm3. This paper represents the first study of this mutation directly on the human isoform of tropomyosin that is involved in nemaline myopathy. It also represents the first time that human tpm3 has been produced using BEVS. This system can now be used to accurately demonstrate the effect of this (and other disease-associated tropomyosin mutations) on the interactions of tpm3 with the other protein components of the muscle thin filament, including those responsible for differing forms of nemaline myopathy.  相似文献   

12.
Skeletal or cardiac muscle fibers can be separated by brief (3-5 second) dissociation of formalin-fixed pieces with a Willems Polytron (Brinkmann Instrument Co.). Such separated fibers are useful for demonstration of abnormal accumulations of lipids, carbohydrates, proteins and minerals in metabolic diseases. Staining techniques for demonstration of various stored materials include: 1) toluidine blue at pH 2.8 for acid mucopolysaccharide in skeletal muscle fibers in Pompe's glycogenesis 2,2) one-step trichrome stain for nemaline myopathy and for abnormal mitochondria in X-linked infantile cardiomyopathy, 3) periodic acid-methenamine silver stain for glycolipid-containing lysosomes in I-cell disease (mucolipidosis 2), 4) Sudan black B stain for lipid in skeletal muscle fibers in Reye's syndrome, infantile lactic acidosis, Leigh's infantile subacute necrotizing encephalopathy and Jansky-Bielschowsky late infantile ceroid lipofuscinosis, 5) iron stain for iron in cardiac and skeletal muscle fibers in thalassemia with advanced hemosiderosis, and 6) autofluorescence for “ceroid” in skeletal muscle fibers in Jansky-Bielschowsky disease.  相似文献   

13.
Skeletal or cardiac muscle fibers can be separated by brief (3--5 second) dissociation of formalin-fixed pieces with a Willems Polytron (Brinkmann Instrument Co.). Such separated fibers are useful for demonstration of abnormal accumulations of lipids, carbohydrates, proteins and minerals in metabolic diseases. Staining techniques for demonstration of various stored materials include: 1) toluidine blue at pH 2.8 for acid mucopolysaccharide in skeletal muscle fibers in Pompe's glycogenesis 2, 2) one-step trichrome stain for nemaline myopathy and for abnormal mitochondria in X-linked infantile cardiomyopathy, 3) periodic acid-methenamine silver stain for glycolipid-containing lysosomes in I-cell disease (mucolipidosis 2), 4) Sudan black B stain for lipid in skeletal muscle fibers in Reye's syndrome, infantile lactic acidosis, Leigh's infantile subacute necrotizing encephalopathy and Jansky-Bielschowsky late infantile ceroid lipofuscinosis, 5) iron stain for iron in cardiac and skeletal muscle fibers in thalassemia with advanced hemosiderosis, and 6) autofluorescence for "ceroid" in skeletal muscle fibers in Jansky-Bielschowsky disease.  相似文献   

14.
Mutations in the human TPM3 gene encoding gamma-tropomyosin (alpha-tropomyosin-slow) expressed in slow skeletal muscle fibers cause nemaline myopathy. Nemaline myopathy is a rare, clinically heterogeneous congenital skeletal muscle disease with associated muscle weakness, characterized by the presence of nemaline rods in muscle fibers. In one missense mutation the codon corresponding to Met-8, a highly conserved residue, is changed to Arg. Here, a rat fast alpha-tropomyosin cDNA with the Met8Arg mutation was expressed in Escherichia coli to investigate the effect of the mutation on in vitro function. The Met8Arg mutation reduces tropomyosin affinity for regulated actin 30- to 100-fold. Ca(2+)-sensitive regulatory function is retained, although activation of the actomyosin S1 ATPase in the presence of Ca(2+) is reduced. The poor activation may reflect weakened actin affinity or reduced effectiveness in switching the thin filament to the open, force-producing state. The presence of the Met8Arg mutation severely, but locally, destabilizes the tropomyosin coiled coil in a model peptide, and would be expected to impair end-to-end association between TMs on the thin filament. In muscle, the mutation may alter thin filament assembly consequent to lower actin affinity and altered binding of the N-terminus to tropomodulin at the pointed end of the filament. The mutation may also reduce force generation during activation.  相似文献   

15.
Telethonin protein expression in neuromuscular disorders   总被引:4,自引:0,他引:4  
Telethonin is a 19-kDa sarcomeric protein, localized to the Z-disc of skeletal and cardiac muscles. Mutations in the telethonin gene cause limb-girdle muscular dystrophy type 2G (LGMD2G).We investigated the sarcomeric integrity of muscle fibers in LGMD2G patients, through double immunofluorescence analysis for telethonin with three sarcomeric proteins: titin, alpha-actinin-2, and myotilin and observed the typical cross striation pattern, suggesting that the Z-line of the sarcomere is apparently preserved, despite the absence of telethonin. Ultrastructural analysis confirmed the integrity of the sarcomeric architecture. The possible interaction of telethonin with other proteins responsible for several forms of neuromuscular disorders was also analyzed. Telethonin was clearly present in the rods in nemaline myopathy (NM) muscle fibers, confirming its localization to the Z-line of the sarcomere. Muscle from patients with absent telethonin showed normal expression for the proteins dystrophin, sarcoglycans, dysferlin, and calpain-3. Additionally, telethonin showed normal localization in muscle biopsies from patients with LGMD2A, LGMD2B, sarcoglycanopathies, and Duchenne muscular dystrophy (DMD). Therefore, the primary deficiency of calpain-3, dysferlin, sarcoglycans, and dystrophin do not seem to alter telethonin expression.  相似文献   

16.
17.
Nemaline myopathy (NM) is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. Mutations in the skeletal muscle α-actin gene (ACTA1) account for ∼25% of all NM cases and are the most frequent cause of severe forms of NM. So far, the mechanisms underlying muscle weakness in NM patients remain unclear. Additionally, recent Magnetic Resonance Imaging (MRI) studies reported a progressive fatty infiltration of skeletal muscle with a specific muscle involvement in patients with ACTA1 mutations. We investigated strictly noninvasively the gastrocnemius muscle function of a mouse model carrying a mutation in the ACTA1 gene (H40Y). Skeletal muscle anatomy (hindlimb muscles and fat volumes) and energy metabolism were studied using MRI and 31Phosphorus magnetic resonance spectroscopy. Skeletal muscle contractile performance was investigated while applying a force-frequency protocol (from 1–150 Hz) and a fatigue protocol (80 stimuli at 40 Hz). H40Y mice showed a reduction of both absolute (−40%) and specific (−25%) maximal force production as compared to controls. Interestingly, muscle weakness was associated with an improved resistance to fatigue (+40%) and an increased energy cost. On the contrary, the force frequency relationship was not modified in H40Y mice and the extent of fatty infiltration was minor and not different from the WT group. We concluded that the H40Y mouse model does not reproduce human MRI findings but shows a severe muscle weakness which might be related to an alteration of intrinsic muscular properties. The increased energy cost in H40Y mice might be related to either an impaired mitochondrial function or an alteration at the cross-bridges level. Overall, we provided a unique set of anatomic, metabolic and functional biomarkers that might be relevant for monitoring the progression of NM disease but also for assessing the efficacy of potential therapeutic interventions at a preclinical level.  相似文献   

18.
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation–contraction coupling in skeletal muscle.  相似文献   

19.
Nemaline myopathy is an inherited muscle disease that is mainly diagnosed by the presence of nemaline rods in muscle biopsies. Of the nine genes associated with the disease, five encode components of striated muscle sarcomeres. In a genetic zebrafish screen, the mutant träge (trg) was isolated based on its reduction in muscle birefringence, indicating muscle damage. Myofibres in trg appeared disorganised and showed inhomogeneous cytoplasmic eosin staining alongside malformed nuclei. Linkage analysis of trg combined with sequencing identified a nonsense mutation in tropomodulin4 (tmod4), a regulator of thin filament length and stability. Accordingly, although actin monomers polymerize to form thin filaments in the skeletal muscle of tmod4trg mutants, thin filaments often appeared to be dispersed throughout myofibres. Organised myofibrils with the typical striation rarely assemble, leading to severe muscle weakness, impaired locomotion and early death. Myofibrils of tmod4trg mutants often featured thin filaments of various lengths, widened Z-disks, undefined H-zones and electron-dense aggregations of various shapes and sizes. Importantly, Gomori trichrome staining and the lattice pattern of the detected cytoplasmic rods, together with the reactivity of rods with phalloidin and an antibody against actinin, is reminiscent of nemaline rods found in nemaline myopathy, suggesting that misregulation of thin filament length causes cytoplasmic rod formation in tmod4trg mutants. Although Tropomodulin4 has not been associated with myopathy, the results presented here implicateTMOD4 as a novel candidate for unresolved nemaline myopathies and suggest that the tmod4trg mutant will be a valuable tool to study human muscle disorders.KEY WORDS: Myofibrillogenesis, Nemaline myopathy, Neuromuscular disorder, Sarcomere assembly, tmod, Tropomodulin  相似文献   

20.
Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号