首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg−1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg−1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.  相似文献   

2.
重金属镉(Cd)在土壤-蔬菜系统中转移方程的建立是农田Cd污染控制和风险评估的关键.本研究通过调查湖南省攸县745个土壤-蔬菜样品Cd含量,应用转移方程、敏感性分布曲线(SSD)和多元回归方法分析不同类别蔬菜Cd累积特征和影响因素,预测不同土壤条件下蔬菜Cd含量并推导相应土壤Cd风险阈值.结果表明: 叶菜对Cd胁迫较根菜敏感;土壤pH、土壤总Cd和土壤有机质(SOM)是影响蔬菜Cd富集的3个主要因子;转移方程对叶菜和根菜的解释程度分别为54.2%和69.1%.土壤Cd风险阈值随土壤pH和SOM的增加而增加,根菜在严重酸化土壤区Cd累积风险较高.当前国家土壤环境质量标准对于严重酸化、有机质含量较低的土壤过于宽泛.  相似文献   

3.
In the present study, three concentrations of FeCl3 were applied to the Cd-contaminated soils at two solid-to-solution ratios, and 1–3 washes were applied. The Cd removal percentages increased with the number of washes. An optimal treatment for removing Cd from the soil was a solid-to-solution ratio of 1/2 using 45 mM FeCl3 and three washes. However, the application of FeCl3 decreased the soil pH values, increased the soil electrical conductivity, and also changed the exchangeable concentrations of cations. These changes negatively influenced the germination percentage of pak choi (Brassica campestris L. ssp. chinensis) compared with control soils.  相似文献   

4.
Cadmium (Cd) is a toxic trace metal pollutant for humans, animals, and plants. Tobacco is a wellknown efficient accumulator of Cd and the genotypic differences in Cd uptake and the response to Cd was not determined. The objectives of this study were to investigate: 1) the effects of Cd on the growth and development of different tobacco cultivars; 2) the differences among tobacco cultivars in Cd concentration, uptake, and use for the phytoremediation of polluted soils with Cd; and (3) the interactions between Cd and Zn with respect to concentration and uptake. The Cd level affected the number of leaves and dry matter accumulation, and there were differences among the different cultivars that were used. Furthermore, some cultivars showed a higher reduction in growth than others, indicating that they are more sensitive to Cd level in the soil. Moreover, differences existed among the cultivars for the Cd concentration and uptake. There also were negative correlations between Cd and Zn concentrations; as Cd accumulation increased, Zn accumulation decreased, which showed that the two heavy metals were antagonistic. These results suggest that tobacco cultivars differed greatly in their growth and developmental responses to Cd and in the concentration and uptake of Cd and Zn. In addition, it is possible to use certain tobacco cultivars to lower the Cd concentration in the soil.  相似文献   

5.
Knight  B.  Zhao  F.J.  McGrath  S.P.  Shen  Z.G. 《Plant and Soil》1997,197(1):71-78
The hyperaccumulator Thlaspi caerulescens J & C Presl. was grown in seven different soils collected from around Europe that had been contaminated with heavy metals by industrial activity or the disposal of sewage sludge to land. Zinc accumulation factors (shoot concentration/initial soil solution concentration) ranged from 3500–85 000 with a mean value of around 36 000. This compares with mean accumulation factors of 636, 66 and 122 for Cd, Ca and Mg, respectively. The concentration of Zn in the shoots was much greater than in the roots. The total removal of Zn and Cd ranged from 8 to 30 and from 0.02 to 0.5 mg kg-1 soil, respectively. The Zn concentration in shoots of T. caerulescens correlated, using a curvilinear relationship, with the initial Zn concentration in soil solution (R2 = total Zn 0.78; Zn2+ 0.80). There was no relationship between the uptake of Zn and the total Zn concentration in the soil. In most soils, solution pH increased only slightly after growth of T. caerulescens, indicating that acidification was not the mechanism used to mobilise Zn in the soil. Dissolved organic carbon concentrations generally increased but characterisation of the component organic compounds was not attempted. The concentrations of Zn and Cd in soil solution decreased considerably after growth of T. caerulescens. The percentages of Zn and Cd in soil solution present as free ions also decreased. However, the decrease of Zn in soil solution after growth accounted for only about 1% of the total Zn uptake by T. caerulescens. This was much lower than for Cd, Ca and Mg. The results suggest that either T. caerulescens was highly efficient at mobilising Zn which was not soluble initially, or the soils used had large buffering capacities to replenish soil solution Zn within a short time. This work highlights the need to investigate the role of root exudates on the mobilisation of Zn and Cd in soils by the hyperaccumulator T. caerulescens.  相似文献   

6.
Bolan  N. S.  Adriano  D. C.  Duraisamy  P.  Mani  A.  Arulmozhiselvan  K. 《Plant and Soil》2003,250(1):83-94
The effect of phosphate on the surface charge and cadmium (Cd) adsorption was examined in seven soils that varied in their variable-charge components. The effect of phosphate on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. Addition of phosphate, as KH2PO4, increased the pH, negative charge and Cd adsorption by the soils. Of the seven soils examined, the three allophanic soils (i.e., Egmont, Patua and Ramiha) exhibited greater increases in phosphate-induced pH, negative charge and Cd2+ adsorption over the other four non-allophanic soils (i.e., Ballantrae, Foxton, Manawatu ad Tokomaru). Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of phosphate effectively reduced the phytotoxicity of Cd. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of phosphate decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fraction in soil. The phosphate-induced alleviation of Cd phytotoxicity can be attributed primarily to Cd immobilization due to increases in pH and surface charge.  相似文献   

7.
ABSTRACT

The rhizosphere soils of two durum wheat (Triticum turgidum var. durum L.) cultivars Kyle and Areola grown in two selected soils of southern Saskatchewan were collected both at 2-week and 7-week plant growth stages. The cadmium availability index (CAI), determined as M NH4CI-extractable Cd, pH and the distribution of the particulate- bound Cd species of the soils were carried out and the data were discussed in comparison with those of the corresponding bulk soil. At the 2-week growth stage, the pH of the rhizosphere soil was less than that of the corresponding bulk soil and the CAI values were higher in the rhizosphere soil, indicating that more Cd was complexed with the low-molecular-weight organic acids (LMWOAs) at the soil-root interface and was extractable by M NH4CI. Compared with the bulk soils, the CAI values were 2–9 times higher in the soil rhizosphere of the plots fertilized with Idaho monoammonium phosphate fertilizer at 2-week growth stage, which is attributed to the combined effects of the Cd introduced into the soil rhizosphere from the fertilizer (Cd content of the fertilizer was 144 mg kg?1) and complexation reactions of phosphate and LMWOAs with soil Cd. At 7-week plant growth stage, such differences were not observed. The increased amounts of carbonate-bound and metal-organic complex-bound Cd species of the rhizosphere soils are due to the increased amounts of carbonate, a product of plant respiration, and the LMWOAs at the soil-root interface, respectively. Simple correlation analysis of the data showed that the CAI of the rhizosphere soils of the control plots correlated at least two orders of magnitude better with the metal-organic complex-bound Cd whereas the CAI of the rhizosphere soils treated with Idaho phosphate correlated better with carbonate-bound Cd species in comparison to other species.  相似文献   

8.
The heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy metal polluted soils (metallicolous ecotype MET) and on soils with normal heavy metal content (non-metallicolous ecotype: NMET). In order to assess the extent and structure of variation in growth, shoot accumulation of Cd, Zn and mineral element (Ca, Mg, K, Fe), a MET ecotype from Belgium and a NMET ecotype from Luxembourg were studied. Seven maternal families from two populations of each ecotype were grown on both Cd and Zn contaminated soil. Although both ecotypes presented a similar heavy metal tolerance in the experimental conditions tested, they differed in several points. The MET populations had markedly higher biomass and higher root:shoot ratio compared to NMET populations. The Zn, and at lesser extent, the Cd hyperaccumulation capacity tended to be higher in the NMET populations. The same trend was observed for the foliar concentrations of Mg, Ca and Fe with NMET populations having higher concentrations compared to MET ones. Cd and Zn concentrations were negatively correlated with the biomass of both ecotype. However, the negative correlation between the Zn and biomass was much lower in MET ecotype suggesting a tighter control of internal Zn concentration in this ecotype. Finally, although the Cd phytoextraction capacity was similar in both ecotype, a higher Zn phytoextraction capacity was detected in NMET ecotype when these plants grow on moderate Cd and Zn concentrations.  相似文献   

9.
Abstract

Little attention has been paid to the combined use of arbuscular mycorrhizal fungus (AMF) and steel slag (SS) for ameliorating heavy metal polluted soils. A greenhouse pot experiment was conducted to study the effects of SS and AMF?Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on plant growth and Cd, Pb uptake by maize grown in soils added with 5?mg Cd kg?1 and 300?mg Pb kg?1 soil. The combined usage of AMF and SS (AMF?+?SS) promoted maize growth, and Gv?+?SS had the most obvious effect. Meanwhile, single SS addition and AMF?+?SS decreased Cd, Pb concentrations in maize, and the greater reductions were found in combined utilization, and the lowest Cd, Pb concentrations of maize appeared in Gv?+?SS. Single SS amendment and AMF?+?SS enhanced soil pH and decreased soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Pb concentrations. Furthermore, alone and combined usage of AMF and SS increased contents of soil total glomalin. Our research indicated a synergistic effect between AMF and SS on enhancing plant growth and reducing Cd, Pb accumulation in maize, and Gv?+?SS exerted the most pronounced effect. This work suggests that AMF inoculation in combination with SS addition may be a potential method for not only phytostabilization of Pb-Cd-contaminated soil but maize safety production.  相似文献   

10.
不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异   总被引:18,自引:3,他引:18  
邬飞波  张国平 《应用生态学报》2002,13(12):1595-1599
利用水培试验研究了不同Cd水平下大麦幼苗的Cd和几种矿质元素吸收、积累、生长和生物学产量的品种间差异 .结果表明 ,1μmol·L-1Cd处理显著降低麦苗株高、绿叶数、叶绿素计读数、地上部和根系干重 ,显著抑制植株对Zn、Mn、Cu的吸收和累积 ;品种之间存在着显著差异 ,无芒六棱受抑制最为严重 ,米麦 114和浙农 1号表现出相对较强的抗性 .麦苗Cd含量和累积量品种之间也有显著差异 ,浙农 1号的Cd含量最高 ,米麦 114最低 .相关分析表明 ,麦苗生物学产量与地上部Cd含量、累积量及根系Cd含量呈显著负相关 ,其中与地上部Cd含量的相关性最强 ,与根系Cd累积量无显著相关 .  相似文献   

11.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

12.
This study characterizes cadmium (Cd) uptake by the waterlily Nymphaea aurora, (Nymphaeaceae) in two systems: a model hydroponic Cd solution and heavily polluted sludge from two sites in Israel. The uptake of Cd from hydroponic solution resulted in Cd storage in petioles and laminae of Nymphaea, as well as in the roots. The pH of the solution affected Cd solubility and availability, with pH 5.5 yielding maximum Cd content in the plant (140 mg Cd per g DW). Cd uptake was reduced by the addition of EDTA to the hydroponic growth medium, although EDTA enhanced heavy metal uptake by terrestrial plants. Nymphaea efficiently reduced the concentration of Cd in heavy metal polluted urban and industrial sludge and the amount of Cd uptake was enhanced by the addition of KCl to the sludge and by adjustment of the pH to 5.5. The inherent growth patterns of Nymphaea plants allowed Cd uptake by the shoot and root, and resulted in maximum contact between the various plant parts and the growth media. Thus, Nymphaea has potential as an optimal, highly effective phytoremediation tool for the removal of Cd from polluted waste sources.  相似文献   

13.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

14.
土壤水分变化对玉米苗期吸收积累镉的影响   总被引:7,自引:2,他引:5  
黄益宗  朱永官  童依平  胡莹  刘云霞 《生态学报》2004,24(12):2832-2836
采用土壤盆栽试验研究不同土壤水分含量对玉米苗期吸收积累 Cd的影响。试验结果表明 ,玉米生物量及其吸收 Cd量在玉米不同的生长时期差异较大。2 2 d收获时 ,玉米地上部和地下部生物量均随着田间持水量 (35 %~ 85 % )的增加而提高 ;而 16 d收获时 ,玉米生物量在田间持水量为 35 %和 85 %时比在其它水分时低许多。 16 d和 2 2 d收获时 ,玉米地上部 Cd含量在田间持水量 5 5 %时分别达到最大值 ,5 5 .4 1mg/ kg和 39.33mg/ kg;而在田间持水量 85 %时分别达最小值 ,2 7.97mg/ kg和 2 3.5 2 m g/kg。在玉米根系的影响下 ,土壤溶液 Cd含量基本上随着玉米的不断生长而降低。田间持水量为 6 5 %时的土壤溶液 Cd含量比田间持水量为 75 %和 85 %时大。玉米总吸 Cd量与水分蒸腾量之间呈极显著的线性正相关关系  相似文献   

15.
两种典型土壤胶体对镉的生物有效性的影响   总被引:1,自引:0,他引:1  
李朝丽  周立祥 《生态学报》2009,29(4):1814-1822
采用黑麦草盆栽试验,研究了人工Cd污染(10.91mg·kg-1)黄棕壤和红壤(简称原土)及其胶体组分(简称胶体)和去胶后组分(简称去胶)Cd的生物有效性,并研究了EDTA对Cd解吸和生物有效性的影响.结果表明:(1)各处理黑麦草株高、地上部干重、根干重、总生物量都表现为胶体>原土>去胶,胶体上总生物量分别是原土和去胶处理的(1.31±0.02)倍和(1.82±0 21)倍.(2)黑麦草体内Cd浓度、及其对Cd的富集系数都表现为胶体<原土<去胶,表明胶体中Cd的生物有效性<原土<去胶.(3)黄棕壤各组分Cd的解吸率分别表现为胶体和原土约为0,去胶组分为(10.5±3.5)%,红壤各组分平均为(20.8±1 9)%,但加入EDTA则明显增加了Cd的解吸,导致黑麦草体内Cd浓度显著增加,黑麦草地上部干重、根干重、总生物量降低.EDTA对Cd的活化作用表现为去胶>原土>胶体,黄棕壤>红壤,EDTA对各处理植株Cd总量的影响与此吻合.这说明,土壤镉的生物有效性受土壤胶体及其pH等的强烈影响.  相似文献   

16.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

17.
It is important to use proper agronomic management to reduce cadmium (Cd) accumulation in plants, ensuring food safety. To find the most effective agronomic approach, the effect of foliar spraying and seed soaking of zinc (Zn) fertilizers on Cd accumulation in cucumbers (Cucumis sativus L.) grown in two soil Cd levels (2 and 5 mg kg?1 Cd) with and without an immobilizing amendment (red mud, RM) was investigated in the present study. The results showed that the treatment of foliar Zn or seed Zn significantly decreased the Cd concentration in cucumber shoots by about 12–36% in Cd-contaminated soils without amendment. Combined with RM treatment, the foliar Zn treatment further decreased the Cd concentration in cucumber shoots by up to 48–66% in Cd-contaminated soils. There were significant negative correlations between Cd and Zn concentrations in shoots of cucumbers grown in soils treated with RM and foliar Zn. The results revealed that the cucumber seedlings treated with RM and foliar Zn had a higher capacity for limiting the transfer of Cd to aboveground tissues. The results also suggested that increasing seed Zn concentrations sufficiently might act as an efficient, economic, and practical method for decreasing Cd uptake in crops grown in mildly Cd-contaminated and Zn-deficient soils.  相似文献   

18.
采用贵州黄壤、石灰土和浙江水稻土,通过盆栽试验探讨了在3种土壤上施用含不同浓度重金属的污泥对小麦、水稻生长及锌(Zn)镉(Cd)吸收性的影响.结果表明: 不同土壤施用同种污泥所产生的重金属污染风险不同,在黄壤和水稻土上施用高浓度重金属污泥对作物的污染风险较高.一次施用Zn、Cd浓度分别为1789、8.47 mg·kg-1的污泥1.6%,使黄壤小麦籽粒中Zn、Cd浓度分别达109、0.08 mg·kg-1;第二次施用后种植水稻,糙米中Zn、Cd浓度达52.0、0.54 mg·kg-1.而施用污泥后石灰性土壤的两种作物其可食部分均无重金属污染风险.土壤醋酸铵提取态Zn是影响麦粒和糙米中Zn浓度的主要因素,而土壤醋酸铵提取态Cd对麦粒和糙米中Cd浓度无明显影响.施用高浓度重金属污泥使3种土壤Zn、Cd全量显著提高,且两次施用后土壤全量Zn均超过国家土壤环境质量二级标准.  相似文献   

19.
Response of castor (Ricinus communis L.) to cadmium (Cd) was assessed by a seed-suspending seedbed approach. Length of total radicle was the most sensitive indicator of Cd tolerance among the tested germination and growth characters. The ED50 value for Cd was 11.87 mg L?1, indicating high Cd tolerance in castor. A pot experiment was conducted by growing 46 varieties of castor under CK (without Cd) and Cd1 (10 mg kg?1 of Cd) and Cd2 (50 mg kg?1 of Cd) treatments to investigate genotype variations in growth response and Cd accumulation of castor under different Cd exposures. Castor possessed high Cd accumulation ability; average shoot and root Cd concentrations of the 46 tested varieties were 21.83 and 185.43 mg kg?1, and 174.99 and 1181.96 mg kg?1 under Cd1 and Cd2, respectively. Great variation in Cd accumulation was observed among varieties, and Cd concentration of castor was genotype dependent. The correlation between biomass and Cd accumulation was significantly positive, while no significant correlation was observed between Cd concentration and Cd accumulation, which indicated that biomass performance is the dominant factor in determining Cd accumulation ability.  相似文献   

20.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentra- tion in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentra- tion of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号