首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Biochar is an organic amendment used for soil remediation, there are only a few studies documenting the effects of nitrogen on the role of biochar in contaminated soils. A pot experiment was conducted to investigate the impacts of biochar (0%, 1%, and 2.5%, w/w) and nitrogen (0, 100, and 200 mg N kg?1) on plant growth, nutrient and cadmium (Cd) uptake of Cichorium intybus. N, P, Ca, Mg, and Cd concentrations increased with N level in 0% and 1% biochar treatments. In plants treated with 2.5% biochar, 200 mg N kg?1 addition caused significant reductions of N, P, Ca, Mg, and Cd concentrations in comparison to 100 mg N kg?1 treatments. Nitrogen promoted shoot biomass at all biochar treatments, while biochar had no effect on shoot biomass in 0 and 200 mg N kg?1 addition treatments. Nitrogen also significantly increased N, P, K, Ca, Mg, and Cd contents in the 0% and 1.5% biochar addition treatments. Although soil DTPA-extractable Cd concentration showed the lowest values in 1% biochar in combination with 100 and 200 mg N kg?1 addition treatments, lowest shoot Cd concentration, and relatively high shoot biomass occurred in the 2.5% biochar + 200 mg N kg?1 treatment. Based on these results, biochar application at its highest rate (2.5%) in combination with high N supply (200 mg N kg?1) contributed to both crop yield and agricultural product safety. N input alone might increase the risk of human health, and the optimum N dose should be determined during phytostabilization process.  相似文献   

2.
Abstract

A sand hydroponic experiment with different concentrations of 0, 5, 10, 20, 40?mg L?1 Cd was used to study the growth and physiological response of Hylotelephium spectabile (Boreau) H. Ohba. and its phytoextraction potential for Cd. The results showed that total plant biomass under 5?mg L?1 Cd treatment was slightly affected. The content of malondialdehyde (MDA) in leaf exposed to Cd was higher, and the POD and CAT activity exhibited a positive response to the low level of Cd addition (5?mg·L?1). The photosynthesis pigments were slightly inhibited, and the ultrastructure of chloroplast remained intact after treatment with 10?mg L?1 Cd. The maximum leaf Cd content (603?mg·kg?1) was found in 5?mg L?1 Cd treatment, then decreased with the Cd level increased. The maximum Cd content in the shoots far exceeds the threshold level (100?mg kg?1) for a Cd-hyperaccumulator plant with the value of translocation factor (TFshoot/root) for Cd reaching up to 5.62. In conclusion, H. spectabile showed normal growth and physiological response and high shoot Cd accumulation under 5?mg L?1 Cd stress, which made it to be a good candidate for phytoextraction of low-level Cd polluted environment.  相似文献   

3.
Maize, sunflower, flax, and spinach differed in the accumulation of Cd when grown on a Cd contaminated soil. This was mainly due to the different Cd net influx, In , that varied among species by a factor of up to 30. The objective of this study was to find possible reasons for the different Cd In by using a mechanistic model. After 14 days of Cd uptake the model calculated only a small Cd depletion at the root surface, e.g. from 0.22 μmol L?1down to 0.19 μmol L?1for maize and from 0.48 μmol L?1down to 0.35 μmol L?1for spinach. Even so the model always overestimated the Cd In , for spinach by a factor of 1.5 and for maize by a factor of 10. Only simulating a decrease of CLi or the root absorbing power, α, by 40% to 90% gave an agreement of calculated and measured In . This may be interpreted as that about 40% in the case of spinach and 90% in the case of maize of the Cd in soil solution were not accessible for plant uptake. The high sensitivity to α also shows that not the Cd transport to the root but α was limiting the step for Cd uptake.  相似文献   

4.
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots.  相似文献   

5.
The objective of this study was to investigate Cd phytoremediation ability of Indian mustard, Brassica juncea. The study was conducted with 25, 50, 100, 200 and 400 mg Kg?1 CdCl2 in laboratory for 21 days and Cd concentrations in the root, shoot and leaf tissues were estimated by atomic absorption spectroscopy. The plant showed high Cd tolerance of up to 400 mg Kg?1 but there was a general trend of decline in the root and shoot length, tissue biomass, leaf chlorophyll and carotenoid contents. The tolerance index (TI) of plants were calculated taking both root and shoot lengths as variables. The maximum tolerance (TI shoot = 87.4 % and TI root = 89.6 %) to Cd toxicity was observed at 25 mg Kg?1, which progressively decreased with increase in dose. The highest shoot (10791 μg g?1 dry wt) and root (9602 μg g?1 dry wt) Cd accumulation was achieved at 200 mg kg?1 Cd treatment and the maximum leaf Cd accumulation was 10071.6 μg g?1 dry wt achieved at 100 mg Kg?1 Cd, after 21 days of treatment. The enrichment coefficient and root to shoot translocation factor were calculated, which, pointed towards the suitability of Indian mustard for removing Cd from soil.  相似文献   

6.
A greenhouse experiment using 24 plastic pots filled with 6 kg of Pb- and Cd-contaminated soil was carried out. In all 24 pots, soils were heavy metal–contaminated with 10 mg Cd kg?1 soil and 500 mg of Pb kg?1 soil by using CdCl and PbNO3. Two-month-old tobacco (Nicotiana tabacum L.) plants were used to extract these heavy metals. Results showed that tobacco is able to remove Cd and Pb from contaminated soils and concentrate them in its harvestable part, that is, it could be very useful in phytoextraction of these heavy metals. Increasing additions of ammonium nitrate to soil (50, 100, and 150 mg N kg?1 soil) significantly (p ≤ .05) increased aboveground Cd and Pb accumulation during a 50-day experimental period, whereas increasing additions of urea to soil (50 and 100 mg N kg?1 soil) did not show these effects at the same significance levels. Increasing additions of ammonium nitrate to soil shows as dry matter increases, both accumulated Cd and accumulated Pb also increase when tobacco plants are growing under Pb- and Cd-contaminated soil conditions. Higher Pb concentrations depress Cd/Pb ratios for concentrations and accumulations, suggesting that Pb negatively affects Cd concentration and/or accumulation.  相似文献   

7.
The objective of this study was to quantify adsorption and degradation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1 -methylethyl) acetamide] and metribizun [4-amino-6-(1,1 -dimethylethyl)-3-(methylthio)-1,2,4-trazine-5(4H)-one] in a soil planted to winter covers clover (Trifolium sp.), vetch (Vicia villosa), and wheat (Triticum aestivum). Surface soil samples (0 to 5?cm) from Memphis silt loam (fine-silty, mixed, thermic Typic Hapludalf) were collected and equilibrated with herbicide at initial concentrations ranging from 0 to 20?mg L?1 that were then applied for a batch experiment. Soils were treated either with a single herbicide or a mixture of the two herbicides. For the degradation experiments, herbicides at a concentration of 10?mg kg?1 soil were applied and incubated for 21?d at ~23°C. Metolachlor and metribuzin adsorptions were described by the Freundlich isotherm. Average Freundlich distribution coefficient (Kf) for metolachlor was significantly higher (p≥0.05) than that of metribuzin in soils under the three crop covers irrespective of method of application. The Kf for metolachlor ranged from 18.38 to 11.18?L kg?1, and Kf for metribuzin ranged from 1.80 to 0.93?L kg?1. Average normalized distribution coefficient (Koc) for metolachlor was significantly higher (p≥0.05) than average Koc for metribuzin irrespective of crop cover. After 21 days of incubation, average half-life of metolachlor across soil under the three crop covers was significantly higher than the average half-life of metribuzin (p≥0.05). Half-life values ranged from 20.6 to 24.9 days for metolachlor, and 4.4 to 12.4 days for metribuzin. In soils treated with metribuzin, the half-life was highest for soil under wheat and lowest for soil under clover (p≥0.05).  相似文献   

8.
The potential for cadmium (Cd) removal from contaminated soil by two species—marigold (Tagetes erecta L.) and Guinea grass (Panicum maximum)—was investigated in pot culture experiments in a greenhouse in triplicate. The concentration of Cd was varied from 50 to 200 mg kg?1 and the pH was varied from 5.0 to 7.5 to investigate the effect of pH on Cd uptake. The results showed that total biomass of Guinea grass was around nine and seven times higher than that of marigold for Cd treatments of 50 and 100 mg kg?1 at pH 5.0, respectively. Total cadmium uptake at Cd treatments of 50 and 100 mg kg?1 at pH 5.0 by Guinea grass was 19.28 ± 3.14 and 36.06 ± 4.28 mg kg?1, respectively, and for marigold was 15.66 ± 4.17 and 20.38 ± 3.24 mg kg?1, respectively. The total Cd uptake by Guinea grass was 1.23 and 1.77 higher than that of marigold at Cd treatments of 50 and 100 mg kg?1, respectively, at pH 5.0 due to higher biomass. The maximum Cd uptake by marigold and Guinea grass occurred at pH 5.0 at Cd treatment of 100 mg kg?1. The results clearly show that the two species behave very differently for Cd uptake. Guinea grass is easy to grow, drought tolerant and, due to its higher biomass, it can be used for remediation of Cd-contaminated soil.  相似文献   

9.
The effects of Ethylenediamine disuccinic acid (EDDS) (0 and 5?mmol·kg?1) as a synthetic chemical amendment, vermicompost (0 and 5%w/w) as an organic amendment and their combined application were evaluated for the phytoextraction by sunflower (Helianthus annuus L.) of cadmium (Cd) and lead (Pb) at three artificial contamination levels in soils (0, 50, and 100?mg·kg?1 for Cd and 0, 100, and 200?mg·kg?1 for Pb). The results showed that the application of EDDS was the most effective method to increase Pb and Cd concentrations in both parts of the plant. The results also showed that the application of EDDS increased 9.27% shoot Pb content at 200?mg·kg?1 but decreased 15.95% shoot Cd content at 100?mg·kg?1 contamination level with respect to the respective controls. The bioavailable concentrations of Cd at 100?mg·kg?1 and Pb at 200?mg·kg?1 contamination level in the soil at the end of experiment increased 25% and 26%, respectively after the application of EDDS but vermicompost decreased 43.28% the bioavailable Pb concentration relative to their controls. Vermicompost increased the remediation factor index of Cd, thus making it the best treatment for the phytoextraction of Cd. The combined application of EDDS and vermicompost was the best amendment for Pb phytoextraction.  相似文献   

10.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

11.
The variations of Cd accumulation in three rootstalk crop species (radish, carrot and potato) were investigated by using twelve cultivars grown in acidic Ferralsols and neutral Cambisols under two Cd treatments (0.3 and 0.6 mg kg?1) in a pot experiment. The result showed that the total Cd uptake was significantly affected by genotype, soil type and interaction between them, suggesting the importance of selecting proper cultivars for phytoextraction in a given soil type. Among the cultivars tested, potato cultivar Luyin No.1 in Ferralsols and radish cultivar Zhedachang in Cambisols exhibited the highest Cd phytoextraction efficiency in aerial parts (4.45% and 0.59%, respectively) under 0.6 mg kg?1Cd treatment. Furthermore, the Cd concentrations in their edible parts were below the National Food Hygiene Standard of China (0.1 mg kg?1, fresh weight). Therefore, phytomanagement of slightly Cd-contaminated soils using rootstalk crops for safe food production combined with long-term phytoextraction was feasible, and potato cultivar Luyin No.1 for Ferralsols and radish cultivar Zhedachang for Cambisols were promising candidates for this approach.  相似文献   

12.
High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg?1 of NH4 +?N and 5.60 mg kg?1 of PO4 3??P and 6.9 mg kg?1 dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH4 +?N (inlet 0.25 ± 0.13 mg L?1), 78% NO2 ??N (inlet 0.78 ± 0.62 mg L?1), 46% NO3 ??N (inlet 18.83 ± 8.93 mg L?1) whereas PO4 3??P was not detected (inlet 1.41 ± 0.21 mg L?1). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4 3??P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.  相似文献   

13.
Cadmium (Cd) and diazinon (DZN) are known to be environmental risk factors for various bone diseases including osteoporosis. Selenium (Se), an essential constituent of many antioxidant enzymes, has in higher concentrations negative effects on the bone. The present study was aimed to investigate possible changes in femoral bone of adult male rats after their acute and subchronic exposures to Cd, DZN and Se. A total of 30 male Wistar rats were randomized into three experimental groups. The rats in the group A (4-months-old) were injected intraperitoneally with a mixture of 2 mg CdCl2 kg?1, 20 mg DZN kg?1 and 2 mg Na2SeO3 kg?1 body weight and killed 36 h after xenobiotics had been injected. In the group B, young males (1-month-old) were administered with a combination of 30 mg CdCl2 L?1, 40 mg DZN L?1 and 5 mg Na2SeO3 L?1 in their drinking water, for 90 days. Ten 4-months-old males without toxicant supplementation served as a control group (C). After treatment period, detailed histological analysis of femoral bone was performed in each group. Our results revealed apparent osteoporotic symptoms (resorption lacunae, osteoporotic fractures) in rats from groups A and B. Moreover, histomorphometrical evaluation showed reduced bone vascularization (constricted primary osteons’ vascular canals and Haversian canals) and weakness mechanical properties of bones (smaller size of the secondary osteons) in these rats in comparison with those of the control group. Our study demonstrates for the first time that acute and subchronic co-administrations to Cd, DZN and Se induce evident manifestation characteristics of osteoporosis in male rats.  相似文献   

14.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

15.
A two-year in-situ phytoremediation trial was launched in Shenyang Zhangshi (Sewage) Irrigation Area (SZIA). The phytoremediation efficiency of Solanum nigrum L. was determined, by both monitoring the change of soil Cadmium level in the upper 20 cm of soil, and calculating the plant uptake of soil Cd. After two years experimental, by monitoring the soil Cd concentrations, The Cd concentrations decreased on average from 2.75 mg kg?1to 2.45 mg kg?1 in the first year and from 2.33 mg kg?1 to 1.53 mg kg?1 in the second year, amounting to a decrease by a factor of 10.6% in the first year and 12% in the second year. After two years phytoremediation by S. nigrum, Cd concentrations of the seven experimental plots with S. nigrum growth decreased from 2.75 mg kg?1 to 1.53 mg kg?1, a decrease by a factor of 24.9%. And the soil Cd concentration decreased only 2.1% and 1.7% in the bared experimental plot. And the calculating of Cd uptake by S. nigrum shown that, the plants uptake 4.46% and 5.18% of the total soil Cd in 2008 and 2009, while the soil Cd concentrations decreased by a factor of 10.6% in 2008 and 12.1% in 2009.  相似文献   

16.
Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg?1 of NiCl2, 100 mg kg?1 of CdCl2, and 150 mg kg?1 of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.  相似文献   

17.
The role of same amendment on phytoremediating different level contaminated soils is seldom known. Soil pot culture experiment was used to compare the strengthening roles of cysteine (CY), EDTA, salicylic acid (Sa), and Tween 80 (TW) on hyperaccumulator Solanum nigrum L. phytoremediating higher level of single cadmium (Cd) or Benzo(a)pyrene (BAP) and their co-contaminated soils. Results showed that the Cd capacities (ug pot?1) in shoots of S. nigrum in the combined treatment T0.1EDTA+0.9CY were the highest for the 5 and 15 mg kg?1 Cd contaminated soils. When S. nigrum remediating co-contaminated soils with higher levels of Cd and BAP, that is, 5 mg kg?1 Cd + 1 mg kg?1 BAP and 15 mg kg?1 Cd + 2 mg kg?1 BAP, the treatment T0.9CY+0.9Sa+0.3TW showed the best enhancing remediation role. This results were different with co-contaminated soil with 0.771 mg kg?1 Cd + 0.024 mg kg?1 BAP. These results may tell us that the combine used of CY, SA, and TW were more useful for the contaminated soils with higher level of Cd and/or BAP. In the combined treatments of Sa+TW, CY was better than EDTA.  相似文献   

18.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

19.
Multiple crop experiment of hyperaccumulator Solanum nigrum L. with low accumulation Chinese cabbage Fenyuanxin 3 were conducted in a cadmium (Cd) contaminated vegetable field. In the first round, the average removal rate of S. nigrum to Cd was about 10% without assisted phytoextraction reagent addition for the top soil (0–20 cm) with Cd concentration at 0.53–0.97 mg kg?1 after its grew 90 days. As for assisted phytoextraction reagent added plots, efficiency of Cd remediation might reach at 20%. However, in the second round, Cd concentration in Chinese cabbage was edible, even in the plots with assisted phytoextraction reagent added. Thus, multiple cropping hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit) in one year, which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.  相似文献   

20.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号