首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of muscle phosphorylase kinase by actin and calmodulin   总被引:1,自引:0,他引:1  
The activation of muscle phosphorylase kinase b by actin has been studied. F-actin which is polymerized by 2 mM MgCl2 is a more effective activator of phosphorylase kinase than F-actin polymerized by 50 mM KCl. There is evidence suggesting that the activation of phosphorylase kinase by actin is not due to trace contamination of actin preparations with calmodulin: (1) Troponin I and trifluoperazine inhibit the activation of phosphorylase kinase by calmodulin but do not inhibit the activation of phosphorylase kinase by F-actin. (2) The activation induced by saturating concentrations of calmodulin and actin is additive both at pH 8.2 and at pH 6.8. (3) The activation of phosphorylase kinase by calmodulin and actin has different pH profiles. An addition of F-actin does not affect the apparent Km value for ATP but increases the sensitivity to phosphorylase b and the value of Vmax.  相似文献   

3.
A purification procedure is described for the initiation factors of protein synthesis from rabbit reticulocytes: (a) from the ribosomal wash and (b) from the postribosomal supernantant. A comparison is made between these preparations with respect to yield and specific activity. eIF-4A and eIF-4D occur mainly in the postribosomal supernatant; eIF-2, eIF-4C and eIF-5 are more evenly divided over both fractions, whereas eIF-1, eIF-3 and eIF-4B are found almost exclusively in the ribosomal wash. No significant difference in specific activity could be detected when factors from both sources were compared, with a possible exception of eIF-4A and eIF-4D.  相似文献   

4.
Ca(2+)- and Mg(2+)-induced association of phosphorylase kinase (PhK) from rabbit skeletal muscle has been studied at the magnitudes of the ionic strength close to the physiological values (40 mM Hepes, pH 6.8, containing 0.1 M NaCl, 0.1 mM Ca(2+), 10 mM Mg(2+); 25 degrees C) and under the molecular crowding conditions produced by high concentrations (1 M) of the natural osmolyte, trimethylamine N-oxide (TMAO). In the presence of 0.1 M NaCl two forms of PhK were registered, namely the "basic form" and "highly associated form", suggesting that PhK association may be treated as an example of cooperative association. According to the data on dynamic light scattering the average hydrodynamic radii of these forms were 16 and 144 nm. The addition of 1 M TMAO produces the time dependent increase in the light scattering intensity caused by the conversion of the basic form into the highly associated form. According to the data of the sedimentation analysis the basic form of PhK comprises a hexadecamer (M(r)=1320 kDa) and its small associates. The removal of Ca(2+) by addition of EGTA results in the reverse conversion of the highly associated form into the basic form suggesting reversibility of self-association of PhK. FAD, the ligand that is specifically bound to PhK, blocks the conversion of the basic form of PhK into the highly associated form.  相似文献   

5.
6.
7.
8.
Although it has been believed for several years that calcium ions are the means by which glycogenolysis and muscle contraction are synchronized, it is only over the past three years that this concept has started to be placed on a firm molecular basis. It appears that the regulation of phosphorylase kinase in vivo is achieved through the interaction of the enzyme with the two calcium binding proteins, calmodulin and troponin-C, and that the relative importance of these proteins depends on the degree of phosphorylation of the enzyme (figure 3). In the dephosphorylated form of the enzyme, troponin-C rather than calmodulin is the dominant calcium dependent regulator providing an attractive mechanism for coupling glycogenolysis and muscle contraction, since the same calcium binding protein activates both processes. On the other hand, the phosphorylated form of the enzyme can hardly be activated at all by troponin-C, although it is still completely dependent on calcium ions. Calmodulin (the δ - subunit) is therefore the dominant calcium dependent regulator of phosphorylase kinase in its hormonally activated state.
Recent work has demonstrated that phosphorylase kinase not only activates phosphorylase, but also phosphorylates glycogen synthase thereby decreasing its activity (45–49). The regulation of phosphorylase kinase by calcium ions may therefore also provide a mechanism for co-ordinating the rates of glycogenolysis and glycogen synthesis during muscle contraction.  相似文献   

9.
10.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

11.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

12.
1. Glycogen synthase from rabbit skeletal muscle was phosphorylated by phosphorylase kinase to yield synthase b2. 2. Dephosphorylation and activation of synthase b2 by the catalytic subunits of protein phosphatase-1 (PP-1c) and protein phosphatase-2A (PP-2Ac) was studied. The apparent Km of PP-1c and PP-2Ac were 3.3 microM and 6.2 microM, respectively. The apparent Vmax of PP-1c was about two times larger than that of PP-2Ac. 3. Ligands with phosphate moiety (AMP, glucose-6-P at high concentration) caused an inhibition in dephosphorylation by both phosphatases. Spermine inhibited the dephosphorylation by PP-1c and stimulated the action of PP-2Ac. Therefore it can be employed to distinguish the phosphatases using synthase b2 as substrate.  相似文献   

13.
The autophosphorylation of the alpha subunit of phosphorylase kinase occurs simultaneously at multiple sites during incorporation of the first mol of phosphate. The predominant and initial autophosphorylation site on this subunit is different than the major site phosphorylated by cAMP-dependent protein kinase, which also phosphorylates multiple sites, as evidenced by two-dimensional phosphopeptide maps. All of the sites on the alpha subunit phosphorylated by cAMP-dependent protein kinase comigrate on peptide maps with autophosphorylation phosphopeptides; however, several phosphopeptides observed after autophosphorylation are not evident following phosphorylation by cAMP-dependent protein kinase. The phosphopeptide maps of the alpha subunit are the same whether autophosphorylation is carried out at pH 6.8 or 8.2 or whether MnATP is used instead of MgATP; there is only a slight difference in the maps brought about by EGTA-insensitive autophosphorylation. The autophosphorylation is shown to be an intrinsic activity of the phosphorylase kinase molecule; this conclusion is based on the observed copurification of the autophosphorylation activity with activities toward phosphorylase b and kappa-casein and the unaltered influence of various effectors on these activities throughout different sequential adsorption chromatography purification steps. Additional support to that already in the literature that the initial autophosphorylation events are predominantly intramolecular is gained by showing that previously autophosphorylated enzyme has little ability to catalyze the phosphorylation of nonphosphorylated enzyme.  相似文献   

14.
The interaction of flavin adenine dinucleotide (FAD) with rabbit skeletal muscle phosphorylase kinase has been studied. Direct evidence of binding of phosphorylase kinase with FAD has been obtained using analytical ultracentrifugation. It has been shown that FAD prevents the formation of the enzyme-glycogen complex, but exerts practically no effect on the phosphorylase kinase activity. The dependence of the relative rate of phosphorylase kinase-glycogen complex formation on the concentration of FAD has cooperative character (the Hill coefficient is 1.3). Under crowding conditions in the presence of 1 M trimethylamine-N-oxide (TMAO), FAD has an inhibitory effect on self-association of phosphorylase kinase. The data suggest that the complex of glycogen metabolism enzymes in protein-glycogen particles may function as a flavin depot in skeletal muscle. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 808–814.  相似文献   

15.
Evidence is presented for the association of a phosphorylase kinase activity with transverse tubules as well as terminal cisternae in triads isolated from rabbit skeletal muscle. This activity remained associated with T-tubules throughout the purification of triad junctions by one cycle of dissociation and reassociation. The possibility that the presence of phosphorylase kinase in these highly purified membrane vesicle preparations was due to its association with glycogen was eliminated by digestion of the latter with α-amylase. The phosphorylase kinase activity associated with the T-tubule membranes was similar to that reported for other membrane-bound phosphorylase kinases. The enzyme had a high pH 6.8pH 8.2 activity ratio (0.4 – 0.7) and a high level of Ca2+ independent activity (EGTACa2+ = 0.3?0.5). The kinase activated and phosphorylated exogenous phosphorylase b with identical time courses. When mechanically disrupted triads were centrifuged on continuous sucrose gradients, the distribution of phosphorylase kinase activity was correlated with the distribution of a Mr 128,000 polypeptide in the gradients. This polypeptide and a Mr 143,000 polypeptide were labeled with 32P by endogenous and exogenous protein kinases. These findings suggest that the membrane-associated phosphorylase kinase may be similar to the cytosolic enzyme. Markers employed for the isolated organelles included a Mr 102,000 membrane polypeptide which followed the distribution of Ca2+-stimulated 3-O-methylfluorescein phosphatase activity, which is specific for the sarcoplasmic reticulum. A Mr 72,000 polypeptide was confirmed to be a T-tubule-specific protein. Several proteins of the triad component organelle were phosphorylated by the endogenous kinase in a Ca2+/calmodulin-stimulated manner, including a Mr ca. 72,000 polypeptide found only in the transverse tubule.  相似文献   

16.
The effects of glycogen on the non-activated and activated forms of phosphorylase kinase were studied. It was found that in the presence of glycogen the activity of non-activated kinase at pH 6.8 and 8.2 and that of the activated (in the course of phosphorylation) form are enhanced. The degree of activation depends on glycogen concentration. At saturating concentrations, this enzyme activity increases 2-3-fold; the enzyme affinity for the protein substrate, phosphorylase b, also shows an increase. The polysaccharide has no effect on the activity of phosphorylase kinase stimulated by limited proteolysis. In the presence of glycogen, the rate of autocatalytic phosphorylation of the enzyme is increased. Glycogen stabilizes the enzyme activity upon dilution. The experimental results suggest that the polysaccharide directly affects the phosphorylase kinase molecule. The maximal binding was shown to occur at the enzyme/polysaccharide ratio of 1:10 (w/w) in the presence of Ca2+ and Mg2+.  相似文献   

17.
Immunological and microanalytical methods were used to investigate the two isozymes of phosphorylase kinase, enzyme w and enzyme r, in psoas major and tibialis anterior muscles. Peptide mapping experiments indicated that the alpha subunit of enzyme w and alpha' subunit of enzyme r were structurally very similar. Both subunits were completely immunoprecipitated from muscle extracts with an antibody specific for the beta subunit of the kinase, indicating that alpha and alpha' subunits are completely assembled with beta subunits in adult muscle fibers. The relative amounts of enzymes w and r in single fibers were determined from amounts of alpha and alpha' subunits, which were detected by immunoblotting. Phosphorylase kinase and phosphorylase activities were measured in the same fibers, as well as in individual fibers from diaphragm and soleus muscles. Slow oxidative fibers were found to contain low levels of enzyme r, but almost no enzyme w. Considerably more enzyme r was present in fast oxidative-glycolytic fibers. Fast glycolytic fibers contained the most enzyme w, and the highest levels of enzyme r were found in a subgroup of such fibers. Interestingly, more than half of the fast glycolytic fibers analyzed contained both isozymes. In these fibers phosphorylase was positively correlated with enzyme w, but negatively correlated with enzyme r. Total kinase activity ranged 30-fold from the highest in one of the psoas fibers to the lowest in one of the soleus fibers and was closely correlated with the phosphorylase levels. In psoas and soleus fibers, calculated absolute maximal rates for phosphorylase b to a conversion varied almost 2,500-fold.  相似文献   

18.
19.
Gangliosides have profound effects on protein phosphorylation in skeletal muscle. Addition of GT1b to guinea pig muscle extract stimulated the phosphorylation of a 98-kDa protein 4-8-fold. In contrast, Ca2+ stimulated the phosphorylation of this protein and two other proteins with apparent Mr of 107,000 and 145,000, respectively. Addition of GT1b in the presence of Ca2+ further enhanced the phosphorylation of the 98-kDa protein but completely inhibited the phosphorylation of both the 107- and the 145-kDa proteins. The nature of the ganglioside-modulated 98-kDa protein has been characterized. Results on the pH activity profiles and the requirements of Ca2+ for phosphorylation suggest that this phosphoprotein may correspond to glycogen phosphorylase. Phosphorylation of purified rabbit muscle phosphorylase b by nonactivated phosphorylase kinase was stimulated by GT1b. This stimulation was in part due to an activation of the kinase activity. Autophosphorylation of highly purified phosphorylase kinase was increased 4-10-fold in the presence of GT1b. Polysialogangliosides were more potent than monosialogangliosides in stimulating the autocatalytic activity, whereas asialo-GM1, colominic acid, N-acetylneuraminic acid, and phosphatidylserine were ineffective. The effects of gangliosides were dose-dependent. At physiological pH, the concentrations of GT1b required for half-maximal stimulation of the autophosphorylation of phosphorylase kinase were 6.4 microM in the absence of Ca2+ and 1.3 microM when the divalent cation was present. These findings suggest that gangliosides may play a role as biomodulators in the regulation of glycogenolysis in muscle.  相似文献   

20.
Summary A heat- and acid-stable proten inhibitor of phosphorylase phosphatase is present in a highly purified preparation of protein inhibitor of cyclic AMP-dependent protein kinase from rabbit skeletal muscle. Although these two inhibitors have strikingly similar properties to each other, such as sensitivity to trypsin and behavior on gel permeation chromatography, they can be separated by polyacrylamide disc gel electrophoresis. This indicates that the phosphatase-inhibitory and kinase-inhibitory activities reside with different protein species. The inhibition of both the enzymes is not altered by incubating the inhibitor preparation with a general phosphoprotein phosphatase, with phosvitin kinase, or with cyclic AMP-dependent protein kinase. Inhibition of phosphorylase phosphatase is of a non-competitive type supporting the idea that the phosphatase inhibitor is not an alternative substrate for the enzyme. Inhibition of phosphatase activity is selective in that it does not occur when phosphorylated histone or phosphorylated protamine are used as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号