首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

Background and Aims

Polyamines and nitric oxide (NO) are two important molecules modulating numerous environment stresses in plants. This study was to investigate the roles of polyamines and NO in aluminum (Al) tolerance in red kidney bean.

Methods

The interaction between putrescine (Put) and NO under Al stress was examined. NO donor and scavenger were used to further examine the role of NO in Al-induced citrate secretion from roots by high performance liquid chromatography.

Results

Al stress caused increase of endogenous free Put, and exogenous Put alleviated Al-induced inhibition of root elongation and Al accumulation. In addition, Put induced NO production and nitrate reductase (NR) activity under Al stress. Al- and Put-induced NO production could be reversed by NR inhibitor. Furthermore, Al stress stimulated citrate secretion from roots, and this response was stimulated by NO donor, whereas NO scavenger inhibited Al-induced citrate secretion from roots. Concomitantly, NO donor reduced Al accumulation in root apexes, while NO scavenger further enhanced Al accumulation. Al-induced inhibition of root growth was significantly improved by exogenous citrate treatment.

Conclusions

Put and NO enhanced Al tolerance by modulating citrate secretion from roots, and NO may act downstream of Put in red kidney bean under Al stress.  相似文献   

2.
3.
Hydrogen sulfide alleviates aluminum toxicity in barley seedlings   总被引:3,自引:0,他引:3  

Aims

Aluminum (Al) toxicity is one of the major factors that limit plant growth. Low concentration of hydrogen sulfide (H2S) has been proven to function in physiological responses to various stresses. The objective of this study is to investigate the possible role of H2S in Al toxicity in barley (Hordeum vulgare L) seedlings.

Methods

Barley seedlings pre-treated with sodium hydrosulfide (NaHS), a H2S donor, and subsequently exposed to Al treatment were studied for their effects on root elongation, Al accumulation in seedlings, Al-induced citrate secretion and oxidative stress, and plasma membrane (PM) H+-ATPase expression.

Results

Our results showed that H2S had significant rescue effects on Al-induced inhibition of root elongation which was correlated well with the decrease of Al accumulation in seedlings. Meanwhile, Al-induced citrate secretion was also significantly enhanced by NaHS pretreatment. Al-induced oxidative stress as indicated by lipid peroxidation and reactive oxygen species burst was alleviated by H2S through the activation of the antioxidant system. Moreover, Al-induced reduction in PM H+-ATPase expression was reversed by exogenous NaHS.

Conclusions

Altogether, our results suggest H2S plays an ameliorative role in protecting plants against Al toxicity by inducing the activities of antioxidant enzymes, increasing citrate secretion and citrate transporter gene expression, and enhancing the expression of PM H+-ATPase.  相似文献   

4.

Aims

Zinc (Zn) and phosphorus (P) deficiency often occurs at the same time and limits crop production in many soils. It has been suggested that citrate root exudation is a response of plants to both deficiencies. We used white lupin (Lupinus albus L.) as a model plant to clarify if citrate exuded by roots could increase the bioavailability of Zn and P in calcareous soils.

Methods

White lupin was grown in nutrient solution and in two calcareous soils in a rhizobox. Rhizosphere soil solution was sampled to determine citrate, metals and P. Based on the measured citrate concentrations, a soil extraction experiment with citrate as extractant was done.

Results

Absence of Zn triggered neither cluster root formation nor citrate exudation of white lupin grown in nutrient solution, whereas low P supply did. The maximum citrate concentration (~1.5?mM) found in the cluster rhizosphere soil solution of one soil mobilized P, but not Zn. In the other soil the highest citrate concentration (~0.5?mM) mobilized both elements.

Conclusions

White lupin does not respond to low Zn bioavailability by increasing citrate exudation. Such a response was observed at low P supply only. Whether Zn and P can be mobilized by citrate is soil-dependent and the possible controlling mechanisms are discussed.  相似文献   

5.
Sun QB  Shen RF  Zhao XQ  Chen RF  Dong XY 《Annals of botany》2008,102(5):795-804

Background and Aims

Aluminium (Al) toxicity and phosphorus (P) deficiency often co-exist in acidic soils and limit crop production worldwide. Lespedeza bicolor is a leguminous forage species that grows very well in infertile, acidic soils. The objective of this study was to investigate the effects of Al and P interactions on growth of Lespedeza and the distributions of Al and P in two different Al-resistant species, and to explore whether P can ameliorate the toxic effect of Al in the two species.

Methods

Two species, Lespedeza bicolor and L. cuneata, were grown for 30 d with alternate Al and P treatments in a hydroponics system. Harvested roots were examined using a root-system scanner, and the contents of Al, P and other nutrient elements in the plants were determined using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Haematoxylin staining was used to observe the distribution of Al in the roots of seedlings. After pre-culture with or without P application, organic acids in the exudates of roots exposed to Al were held in an anion-exchange resin, eluted with 2 m HCl and then analysed using high-performance liquid chromatography (HPLC).

Key Results

Lespedeza bicolor exhibited a stronger Al resistance than did L. cuneata; Al exclusion mechanisms may mainly be responsible for resistance. P application alleviated the toxic effect of Al on root growth in L. bicolor, while no obvious effects were observed in L. cuneata. Much less Al was accumulated in roots of L. bicolor than in L. cuneata after P application, and the P contents in both roots and shoots increased much more for L. bicolor than for L. cuneata. Lespedeza bicolor showed a higher P/Al ratio in roots and shoots than did L. cuneata. P application decreased the Al accumulation in root tips of L. bicolor but not in L. cuneata. The amount of Al-induced organic acid (citrate and malate) exudation from roots pre-cultured with P was much less than from roots without P application; no malate and citrate exudation was detected in L. cuneata.

Conclusions

P enhanced Al resistance in the Al-resistant L. bicolor species but not in the Al-sensitive L. cuneata under relatively high Al stress, although P in L. cuneata might also possess an alleviative potential. Enhancement of Al resistance by P in the resistant species might be associated with its more efficient P accumulation and translocation to shoots and greater Al exclusion from root tips after P application, but not with an increased exudation of organic acids from roots.Key words: Lespedeza bicolor, L. cuneata, Al toxicity, Al resistance, root morphology, phosphorus  相似文献   

6.
Aluminium (Al) toxicity or phosphorus (P) deficiency can induce exudation of organic acids from the roots of some plants, which is believed to be a tolerance mechanism against Al toxicity or P deficiency. In the present study, the effect of P deficiency on Al-induced citrate exudation was investigated in three soybean varieties differing in low-P tolerance. P starvation alone failed to induce secretion of organic acids from all three soybean varieties. However, P deficiency altered Al-induced citrate exudation over time, showing a complex interaction. Short × term P starvation (4 days) produced up to 50% increase in Al-induced citrate secretion, while longer-term (10 days) starvation reduced Al-induced citrate secretion to trace amounts. However, after a further 1 day in complete nutrient solution for recovery, Al-induced citrate exudation from the recovered roots was approximately 6 times higher than that from the continuously P-starved plants, but still approximately 3.6 times lower than that from the P-sufficient control. With increasing P or Al supply, Al-induced citrate exudation increased, while Al accumulation in soybean roots decreased in parallel with the decrease of P supply. The photosynthetic rate, stomatal conductance and transpiration were decreased by P deficiency, whereas the intracellular CO2 concentration was increased. These findings indicate that P nutrition has a significant effect on Al-induced citrate exudation and Al accumulation in soybean root apices.  相似文献   

7.

Background and aims

Enhanced aluminum (Al) resistance has been observed in dicots over-expressing enzymes involved in organic acid synthesis; however, this approach for improving Al resistance has not been investigated in monocots. Among the cereals, oat (Avena sativa L.) is considered to be Al resistant, but the basis of resistance is not known.

Methods

A hydroponic assay and hematoxylin staining for Al accumulation in roots were used to evaluate Al resistance in 15 oat cultivars. Malate and citrate release from roots was measured over a 24?h period. A malate dehydrogenase gene, neMDH, from alfalfa (Medicago sativa L.) was used to transform oat.

Results

Oat seedlings were highly resistant to Al, as a concentration of 325?μM AlK(SO4)2 was needed to cause a 50% decrease in root growth. Most oat cultivars tested are naturally resistant to high concentrations of Al and effectively excluded Al from roots. Al-dependent release of malate and Al-independent release of citrate was observed. Al resistance was enhanced in a transgenic oat line with the highest accumulation of neMDH protein. However, overall root growth of this line was reduced and expression of neMDH in transgenic oat did not enhance malate secretion.

Conclusions

Release of malate from oat roots was associated with Al resistance, which suggests that malate plays a role in Al resistance of oat. Over-expression of alfalfa neMDH enhanced Al resistance in some lines but was not effective alone for crop improvement.  相似文献   

8.
To further understand the process of Al-induced citrate secretion from soybean roots, the effect of protein synthesis inhibitor, anion channel blockers, and citrate carrier inhibitors on Al-induced citrate exudation was investigated in Al-resistant soybean cultivar PI 416937. Citrate exudation from roots increased with the increase of Al concentration from 10 to 50 μM and initiated after 4 h of Al exposure. Protein synthesis inhibitor, cycloheximide (CHM; 25 μM) completely inhibited Al-induced citrate secretion during 12-h exposure, suggesting that novel protein synthesis was necessary in Al-induced citrate efflux. Also both anion channel blocker anthracene-9-carboxylic acid (A-9-C) and citrate carrier inhibitor mersalyl acid (Mersalyl) significantly reduced citrate secretion, suggesting that both anion channels in plasma membrane and citrate carriers in mitochondria membrane were the rate limiting factors of Al dependent citrate release. However, Al-induced citrate secretion was insensitive to anion channel blockers phenylglyoxal (PG), 4,4′-diisothiocyanostibene-2,2′-disulfonat (DIDS) and citrate carrier inhibitor pyridoxal 5′-P (PP).  相似文献   

9.

Background and aims

Low phosphorus (P) bioavailability and aluminum (Al) toxicity are two major constraints to plant growth in acid soil. To improve the tolerance of Brassica napus to Al toxicity and P deficiency, we generated transgenic canola (Brassica napus cv Westar) lines overexpressing a Pseudomonas aeruginosa citrate synthase (CS) gene and then investigated the effects of CS gene overexpressing in canola on enhancing tolerance to the two constraints.

Methods

The vector construction and plant transformation, molecular identification, estimation of extracellular and cellular citrate and malate concentrations, enzyme activity and gene expression analyse and Al tolerance and P acquisition assays were conducted using both hydroponics and soil culturing in the study.

Results

Both the root citrate and malate concentrations and their exudations in the two transgenic lines significantly increased compared with wild type (WT) following exposure to Al. These increases may be attributed to higher activities of the CS, malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes in the TCA cycle and the expression of BnALMT and BnMATE in the transgenic plants following Al exposure. The primary root elongation and prolonged Al treatment (10 days) experiments revealed that the transgenic lines displayed enhanced levels of Al tolerance. In addition, they showed enhanced citrate and malate exudation when grown in P-deficient conditions. Moreover, the enzyme activities of the transgenic lines were significantly higher compared with WT in response to P-deficient stress. The soil culture experiment showed that the transgenic lines possessed improved P uptake from the soil and accumulated more P in their shoots and seeds when FePO4 was used as the sole P source.

Conclusions

These results indicate that the overexpression of the CS gene in B. napus not only leads to increased citrate synthesis and exudation but also changes malate metabolism, which confers improved tolerances to Al toxicity and P deficiency in the transgenic plants. These findings provide further insight into the dual effects of CS gene overexpression on Al toxicity and P deficiency in plants.  相似文献   

10.

Aims

Glucose-6-phosphate dehydrogenase (G6PDH) has been reported to be involved in resistance to various environmental stresses. However, the role of G6PDH in aluminum (Al) toxicity remains unclear.

Methods

Physiological and biochemical methods together with histochemical analysis were used to investigate the participation of G6PDH in Al-induced inhibition of root growth.

Results

Exposure to high Al concentration caused a significant increase in the activities of total and cytosolic G6PDH in roots of soybean. Al-induced inhibition of root growth and oxidative stress were alleviated by a G6PDH inhibitor. Reactive oxygen species (ROS) accumulation in Al-treated root apexes could be abolished by a NADPH oxidase inhibitor. Furthermore, treatment with a G6PDH inhibitor reduced NADPH content and NADPH oxidase activity in Al-treated root apexes. Further investigation demonstrates that nitric oxide (NO) mediates Al-induced increase in cytosolic G6PDH activity by modulating the expression of genes encoding cytosolic G6PDH. In addition, nitrate reductase pathway is mainly responsible for Al-induced NO production in root apexes.

Conclusions

These results indicate that NADPH produced by NO-modulated cytosolic G6PDH in root apexes is responsible for ROS accumulation mediated by NADPH oxidase under Al stress, subsequently suffering from oxidative stress and thus causing the inhibition of root elongation.
  相似文献   

11.
12.
Yang ZM  Wang J  Wang SH  Xu LL 《Planta》2003,217(1):168-174
Aluminum-induced exudation of organic acids from roots has been proposed as a mechanism for Al tolerance in plants. To better understand the regulatory process leading to efflux of organic acids, the possible involvement of salicylic acid (SA) in regulating Al-induced citrate release in Cassia tora L. was identified. The response of citrate efflux to exogenous SA was concentration-dependent. Application of SA at 5 microM in solution containing 20 microM Al increased citrate efflux to levels 1.76-fold higher than in controls (20 microM Al alone). However, inhibition of citrate release was observed when SA concentrations increased to more than 20 microM. Increased citrate efflux due to the SA treatment was associated with decreased inhibition of root growth and Al content in root tips, suggesting that exogenous SA could confer Al tolerance by increasing citrate efflux. We also examined citrate synthase activities (EC 4.1.3.7) and citrate concentrations in root tips exposed to Al and/or SA. However, both citrate synthase activities and citrate accumulation remained unaffected. These results indicate that SA-promotion of Al-induced citrate efflux is not correlated with increase in citrate production. Total endogenous SA concentrations were measured in root tips and the SA concentrations were significantly enhanced by Al at levels of 10-50 microM.  相似文献   

13.

Aims

Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance.

Methods

112 Kenyan maize accessions were phenotyped for Al tolerance in solution culture. Several Al tolerance-related parameters including relative net root growth (RNRG), root apex Al accumulation, Al-activated root organic acid exudation, and expression of the maize Al tolerance gene, ZmMATE1, were used to classify Kenyan maize accessions.

Results

Based on RNRG, 42 %, 28 %, and 30 % of the lines were classified as highly tolerant, moderately tolerant and sensitive, respectively. Tolerant accessions accumulated less Al in their root apices compared to sensitive lines. The Kenyan maize line, CON 5, and the Brazilian standard for tolerance, Cateto, exhibited the greatest Al tolerance based on RNRG, but CON 5 had only about 50 % of ZmMATE1 gene expression relative to Cateto. CON 5 also had low root apex Al content and high citrate exudation, suggesting that it may employ a citrate transporter other than ZmMATE1.

Conclusions

We identified a very Al tolerant Kenyan maize line whose Al tolerance may be based in part on a novel tolerance gene. The maize lines identified in this study are useful germplasm for the development of varieties suitable for agriculture on acid soils in Kenya.
  相似文献   

14.

Background and Aims

Plant acquisition of endogenous forms of soil phosphorus (P) could reduce external P requirements in agricultural systems. This study investigated the interaction of citrate and phytase exudation in controlling the accumulation of P and depletion of soil organic P by transgenic Nicotiana tabacum plants.

Methods

N. tabacum plant lines including wild-type, vector controls, transgenic plants with single-trait expression of a citrate transporter (A. thaliana frd3) or fungal phytases (phyA: A. niger, P. lycii) and crossed plant lines expressing both traits, were characterized for citrate efflux and phytase exudation. Monocultures and intercropped combinations of single-trait plants were grown in a low available P soil (12 weeks). Plant biomass, shoot P accumulation, rhizosphere soil pH and citrate-extractable-P fractions were determined. Land Equivalent Ratio and complementarity effect was determined in intercropped treatments and multiple-linear-regression was used to predict shoot P accumulation based on plant exudation and soil P depletion.

Results

Crossed plant lines with co-expression of citrate and phytase accumulated more shoot P than single-trait and intercropped plant treatments. Shoot P accumulation was predicted based on phytase-labile soil P, citrate efflux, and phytase activity (Rsq=0.58, P < .0001). Positive complementarity occurred between intercropped citrate- and phytase-exuding plants, with the greatest gains in shoot P occurring in plant treatments with A. niger phyA expression.

Conclusions

We show for the first time that trait synergism associated with the exudation of citrate and phytase by tobacco can be linked to the improved acquisition of P and the depletion of soil organic P.
  相似文献   

15.

Key message

Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling.

Abstract

Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC–ESI(?)–MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.  相似文献   

16.
Aluminum (Al) is the main limiting factor for crop production in acidic soils. Efflux of organic acids is one of the mechanisms that determine Al-tolerance, and an Al-activated citrate transporter (multidrug and toxic compound extrusion) MATE1 gene is involved in different species. The contribution of the rye MATE1 gene (ScMATE1) depends on the rye (Secale cereale L.) cultivars and the crosses analyzed; there is no information about different rye species. The cDNA sequences, phylogenetic relationships, Al-tolerance, citrate exudation, and expression of the ScMATE1 gene were analyzed in several cultivars and wild species/subspecies of the Secale genus. Genotypes highly tolerant to Al were found within this genus. For the first time, sequences of the cDNA of the ScMATE1 gene were isolated and characterized in wild ryes. At least two copies of this gene were found likely to be related to Al-tolerance. The sequence comparison of 13 exons of ScMATE1 revealed variability between species, but also inter- and intra-cultivars. Variations were found in the Al-induced expression of ScMATE1 gene, as well as its contribution to Al-tolerance. The pattern of citrate exudation was inducible in most of the species/subspecies studied and constitutive in few. The phylogenetic analysis indicated that ScMATE1 is orthologue of two genes (HvMATE1 and TaMATE1) involved in the Al stress response in barley and wheat, respectively, but not orthologue of SbMATE, implicated in Al-tolerance in sorghum. ScMATE1 is involved in the response to Al stress in ryes, but its contribution to Al-tolerance is complex, and like in other species, there are tolerant and sensitive alleles in the different cultivars and species studied.  相似文献   

17.

Key message

AtPrx64 is one of the peroxidases gene up-regulated in Al stress and has some functions in the formation of plant second cell wall. Its overexpression may improve plant tolerance to Al by some ways. Studies on its function under Al stress may help us to understand the mechanism of plant tolerance to Al stress.

Abstract

In Arabidopsis thaliana, the expressions of some genes (AtPrxs) encoding class III plant peroxidases have been found to be either up-regulated or down-regulated under aluminum (Al) stress. Among 73 genes that encode AtPrxs in Arabidopsis, AtPrx64 is always up-regulated by Al stress, suggesting this gene plays protective roles in response to such stress. In this study, transgenic tobacco plants were generated to examine the effects of overexpressing of AtPrx64 gene on the tolerance to Al stress. The results showed that overexpression of AtPrx64 gene increased the root growth and reduced the accumulation of Al and ROS in the roots. Compared with wild type controls, transgenic tobaccos had much less soluble proteins and malondialdehyde in roots and much more root citrate exudation. The activity of plasma membrane (PM) H+-ATPase, the phosphorylation of PM H+-ATPase and its interaction with 14-3-3 proteins increased in transgenic tobaccos; moreover, the content of lignin in root tips also increased. Taken together, these results showed that overexpression of AtPrx64 gene might enhance the tolerance of tobacco to Al stress.
  相似文献   

18.

Aims

Phytoremediation is an emerging strategy for the removal of heavy metal contaminants. However, one of the prerequisite is to understand adequately plant resistant mechanisms. The present study was performed to assess the role of endogenous SA in plant response to Pb or Cd using wild-type (wt) Arabidopsis and its SA-accumulating mutant snc1, SA-reducing transgenic line nahG, SA signal-blocking npr1-1, and snc1/nahG (i.e. expression of nahG in snc1 plant) with a comparable level of SA to the wt.

Methods

Plants were grown hydroponically in controlled conditions. For heavy metal exposure, Pb2+ or Cd2+ at final concentrations of 50 μM, 100 μM, and 150 μM, respectively, was added to the culture solution. Unless otherwise indicated, samples were harvested after 7 d of exposure, and used for analyses.

Results

Compared to the wt level, the high endogenous SA significantly potentiated Pb- and Cd-induced plant growth retardation, whereas SA deficiency decreased the growth inhibition, and SA signaling blockage also had some protective effect. The expression of nahG in snc1 plant mitigated effectively the growth inhibition. The SA-related mechanism was involved in redox homeostasis, photosynthetic process, and soluble matter accumulation.

Conclusions

These results suggest that Pb- or Cd-induced phytotoxicity in Arabidopsis was intensified by elevated endogenous SA, whereas ameliorated by reduced SA.  相似文献   

19.
Molecular mechanisms of Al tolerance in gramineous plants   总被引:2,自引:0,他引:2  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号