首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll‐cycle pigments and the photosynthetic light use efficiency, Fv/Fm, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red‐edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.  相似文献   

2.

Background and Aims

Explosives released into the environment from munitions production, processing facilities, or buried unexploded ordnances can be absorbed by surrounding roots and induce toxic effects in leaves and stems. Research into the mechanisms with which explosives disrupt physiological processes could provide methods for discrimination of anthropogenic and natural stresses. Our objectives were to experimentally evaluate the effects of natural stress and explosives on plant physiology and to link differences among treatments to changes in hyperspectral reflectance for possible remote detection.

Methods

Photosynthesis, water relations, chlorophyll fluorescence, and hyperspectral reflectance were measured following four experimental treatments (drought, salinity, trinitrotoluene and hexahydro-1,3,5-trinitro-l,3,5-triazine) on two woody species. Principal Components Analyses of physiological and hyperspectral results were used to evaluate the differences among treatments.

Results

Explosives induced different physiological responses compared to natural stress responses. Stomatal regulation over photosynthesis occurred due to natural stress, influencing energy dissipation pathways of excess light. Photosynthetic declines in explosives were likely the result of metabolic dysfunction. Select hyperspectral indices could discriminate natural stressors from explosives using changes in the red and near-infrared spectral region.

Conclusions

These results show the possibility of using variations in energy dissipation and hyperspectral reflectance to detect plants exposed to explosives in a laboratory setting and are promising for field application using plants as phytosensors to detect explosives contamination in soil.  相似文献   

3.
This study aimed to evaluate the photochemical reflectance index (PRI) for assessing plant photosynthetic performance throughout the plant life cycle. The relationships between PRI, chlorophyll fluorescence parameters, and leaf pigment indices in Solanum melongena L. (aubergine; eggplant) were studied using photosynthetic induction curves both in short-term (diurnal) and long-term (seasonal) periods under different light intensities. We found good correlations between PRI/non-photochemical quenching (NPQ) and PRI/electron transport rate (ETR) in the short term at the same site of a single leaf but these relationships did not hold throughout the life of the plant. In general, changes in PRI owing to NPQ or ETR variations in the short term were <20?% of those that occurred with leaf aging. Results also showed that PRI was highly correlated to plant pigments, especially chlorophyll indices measured by spectral reflectance. Moreover, relationships of steady-state PRI/ETR and steady-state PRI/photochemical yield of photosystem II (Φ(PSII)) measured at uniform light intensity at different life stages proved that overall photosynthesis capacity and steady-state PRI were better correlated through chlorophyll content than NPQ and xanthophylls. The calibrated PRI index accommodated these pigments effects and gave better correlation with NPQ and ETR than PRI. Further studies of PRI indices based on pigments other than xanthophylls, and studies on PRI mechanisms in different species are recommended.  相似文献   

4.

Aims

The purpose of the present study was to investigate the mechanism of carbon monoxide (CO) and hematin in alleviating the inhibition of Cassia obtusifolia seeds and seedlings. NaCl (100?mM) was used to mimic salinity stress in a series of experiments.

Methods

Varying combinations of CO in a saturated aqueous solution and hematin (1.0?μM) were added to seeds and seedlings under salinity stress. Seed germination indices and seedling parameters were investigated.

Results

Seed germination and seedling growth were significantly inhibited under salinity stress. NaCl-induced inhibitory effects on seed germination and seedling growth were ameliorated by hematin or the CO aqueous solution. Addition of 1.0?μM hematin or 5?% CO-saturated aqueous solution to seeds and seedlings significantly alleviated damage to the plant cells under salinity stress. Hematin and the CO aqueous solution enhanced chlorophyll concentration, total soluble sugars, free proline, and soluble protein, and improved photosystem II (PSII) photochemical efficiency levels, PSII actual photochemical efficiency, and the photochemical quench coefficient. In contrast, the non-photochemical quenching coefficient decreased. Hematin and the CO aqueous solution also enhanced the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase, thus alleviating oxidative damage, as indicated by decreases in hiobarbituric acid reactive substances, hydrogen peroxide concentration, relative conductivity, and lipoxygenase activity. Heme oxygenase (HO) activity was increased by hematin treatment. Hematin may contribute to endogenous HO-derived CO, since the addition of zinc protoporphyrin IX or hemoglobin reversed the protective effects conferred by hematin specified above.

Conclusions

Based on the experimental results, we conclude that hematin and CO induce advantageous effects on the attenuation of salt-stress inhibition of C. obtusifolia seeds and seedlings and alleviate oxidative damage by conferring beneficial cytoprotection and activating anti-oxidant enzymes.  相似文献   

5.
The objective of this investigation was to evaluate the simultaneous action of light stress and salinity. Pulse amplitude modulated chlorophyll fluorescence, P700 redox state, and pigment analysis were used to assess the impact of high light intensity on Paulownia tomentosa × fortunei and Paulownia elongata × elongata grown on soils with different salinity. It was found that light stress reduced the amount of pigments and the efficiency of photochemical energy conversion, inhibited the maximum and the effective quantum yields of PSII photochemistry, decreased photochemical quenching and photosynthetic rate. Data also showed influence on the primary quinone acceptor (QA) reoxidation, which led to the restriction of the electron flow from QA to plastoquinone and stimulation of the cyclic electron flow. The possible reasons for the increased effects of the light stress under conditions of high salt concentration in soil for Paulownia tomentosa × fortunei are discussed.  相似文献   

6.

Background and aims

This study investigated the effect of cyanobacterial inoculants on salt tolerance in wheat.

Methods

Unicyanobacterial crusts of Nostoc, Leptolyngbya and Microcoleus were established in sand pots. Salt stress was targeted at 6 and 13 dS m?1, corresponding to the wheat salt tolerance and 50 % yield reduction thresholds, respectively. Germinated wheat seeds were planted and grown for 14 (0 and 6 dS m?1) and 21 (13 dS m?1) days by which time seedlings had five emergent leaves. The effects of cyanobacterial inoculation and salinity on wheat growth were quantified using chlorophyll fluorescence, inductively coupled plasma-optical emission spectrometry and biomass measurements.

Results

Chlorophyll fluorescence was negatively affected by soil salinity and no change was observed in inoculated wheat. Effective photochemical efficiency correlated with a large range of plant nutrient concentrations primarily in plant roots. Inoculation negatively affected wheat biomass and nutrient concentrations at all salinities, though the effects were fewer as salinity increased.

Conclusions

The most likely explanation of these results is the sorption of nutrients to cyanobacterial extracellular polymeric substances, making them unavailable for plant uptake. These results suggest that cyanobacterial inoculation may not be appropriate for establishing wheat in saline soils but that cyanobacteria could be very useful for stabilising soils.  相似文献   

7.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

8.

Aims

A causal relationship between salinity and oxidative stress tolerance and a suitability of using root antioxidant activity as a biochemical marker for salinity tolerance in barley was investigated.

Methods

Net ion fluxes were measured from the mature zone of excised roots of two barley varieties contrasting in their salinity tolerance using non-invasive MIFE technique in response to acute and prolonged salinity treatment. These changes were correlated with activity of major antioxidant enzymes; ascorbate peroxidase, catalase, and superoxide dismutase.

Results

It was found that genotypic difference in salinity tolerance was largely independent of root integrity, and observed not only for short-term but also long-term NaCl exposures. Higher K+ retention ability (and, hence, salinity tolerance) positively correlated with oxidative stress tolerance. At the same time, antioxidant activities were constitutively higher in a sensitive but not tolerant variety, and no correlation was found between SOD activity and salinity tolerance index during large-scale screening.

Conclusion

Although salinity tolerance in barley correlates with its oxidative stress tolerance, higher antioxidant activity at one particular time does not correlate with salinity tolerance and, as such, cannot be used as a biochemical marker in barley screening programs.  相似文献   

9.
10.
Winkel  T.  Méthy  M.  Thénot  F. 《Photosynthetica》2002,40(2):227-232
Net photosynthetic rate, radiation use efficiency, chlorophyll (Chl) fluorescence, photochemical reflectance index (PRI), and leaf water potential were measured during a 25-d period of progressive water deficit in quinoa plants grown in a glasshouse in order to examine effects of water stress and ontogeny. All physiological parameters except Fv/Fm were sensitive to water stress. Ontogenic variations did not exist in Fv/Fm and leaf water potential, and were moderate to high in the other parameters. The complete recovery of photosynthetic parameters after re-irrigation was related with the stability in Fv/Fm. PRI showed significant correlation with predawn leaf water potential, Fm, and midday Fv/Fm. Thus PRI and Chl fluorescence may help in assessing physiological changes in quinoa plants across different developmental stages and water status.  相似文献   

11.

Aims

Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. The working hypothesis is that salt tolerance shapes the presence of these species in their specific habitats.

Methods

Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development.

Results

Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species’ salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution.

Conclusions

G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stress.  相似文献   

12.
Varietal differences of quinoa’s tolerance to saline conditions   总被引:1,自引:0,他引:1  

Aims

This study aimed to assess varietal differences of quinoa’s tolerance to salinity and to investigate physiological mechanisms conferring these differences.

Methods

Production of biomass in fourteen varieties grown under saline conditions was analysed in a pot experiment. For two contrasting varieties, the Danish variety Titicaca and the Bolivian variety Utusaya gas exchange, chlorophyll content index (CCI), fluorescence and ion relations were studied.

Results

Responses to salinity differed greatly among the varieties; least affected were two varieties from the Bolivian altiplano and a variety from Peru. Titicaca and Utusaya both had substantially increased K+ concentrations in the leaf sap. But, Utusaya was much more efficient in restricting xylem Na+ loading. Xylem Na+ and K+ loading were found to be uncoupled. Utusaya maintained a relatively high stomatal conductance resulting in an only 25% NaCl-induced reduction in net CO2 assimilation compared to a 67% reduction in salt treated Titicaca plants. Maximum photochemical efficiency of PSII was not affected by salinity.

Conclusion

In addition to maintaining high gas exchange, tolerant varieties better control xylem Na+ loading. To what extent this control is related to radial root Na+ uptake or to the activity of Na+/H+-exchangers at the xylem parenchyma boundary remains to be studied.  相似文献   

13.
In this study, we investigated responses of the Photochemical Reflectance Index (PRI), and Normalized Difference Vegetation Index (NDVI) to gradual dehydration of several Antarctic lichen species (chlorolichens: Xanthoria elegans, Rhizoplaca melanophthalma, Physconia muscigena, cyanolichen: Leptogium puberulum), and a Nostoc commune colony from fully wet to a dry state. The gradual loss of physiological activity during dehydration was evaluated by chlorophyll fluorescence parameters. The experimental lichen species differed in thallus color, and intrathalline photobiont. In the species that did not exhibit color change with desiccation (X. elegans), NDVI and PRI were more or less constant (mean of 0.25, ??0.36, respectively) throughout a wide range of thallus hydration status showing a linear relation to relative water content (RWC). In contrast, the species with apparent species-specific color change during dehydration exhibited a curvilinear relation of NDVI and PRI to RWC. PRI decreased (R. melanophthalma, L. puberulum), increased (N. commune) or showed a polyphasic response (P. muscigena) with desiccation. Except for X. elegans, a curvilinear relation was found between the NDVI response to RWC in all species indicating the potential of combined ground research and remote sensing spectral data analyses in polar regions dominated by lichen flora. The chlorophyll fluorescence data recorded during dehydration (RWC decreased from 100 to 0%) revealed a polyphasic species-specific response of variable fluorescence measured at steady state—Fs, effective quantum yield of photosystem II (ΦPSII), and non-photochemical quenching (qN). Full hydration caused an inhibition of ΦPSII in N. commune while other species remained unaffected. The dehydration-dependent fall in ΦPSII was species-specific, starting at an RWC range of 22–32%. Critical RWC for ΦPSII was around 5–10%. Desiccation led to a species-specific polyphasic decrease in Fs and an increase in qN indicating the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts and N. commune cells. In this study, the spectral reflectance and chlorophyll fluorescence data are discussed in relation to the potential of ecophysiological processes in Antarctic lichens, their resistance to desiccation and survival in Antarctic vegetation oases.  相似文献   

14.

Key message

The overexpression of tomato GDP- l -galactose phosphorylase gene enhanced tolerance to chilling stress and reduced photoinhibition of photosystems I and II in transgenic tobacco.

Abstract

Chilling stress is a crucial factor that limits the geographical distribution and yield of chilling-sensitive plants. Ascorbate (AsA) protects plants by scavenging reactive oxygen species and reduces photoinhibition by promoting the conversion of violaxanthin to zeaxanthin in the xanthophyll cycle to dissipate excess excitation energy. Possible mechanisms of AsA for plant photoprotection under chilling stress were investigated by isolating the tomato GDP-l-galactose phosphorylase gene (SlGGP) and producing transgenic tobacco plants with overexpression of SlGGP. The transgenic plants subjected to chilling stress accumulated less H2O2, demonstrated lower levels of ion leakage and malondialdehyde, and acquired higher net photosynthetic rate, higher maximum photochemical efficiency of PSII, and higher D1 protein content compared with the wild-type (WT) plants. The transgenic plants subjected to chilling stress also showed higher GDP-l-galactose phosphorylase activity, increased AsA content as well as ascorbate peroxidase and oxidizable P700 activities than WT plants. Thus, SlGGP overexpression is crucial in promoting AsA synthesis and alleviating photoinhibition of two photosystems.  相似文献   

15.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

16.

Background and aims

The beneficial effects of Si have mainly been observed in herbaceous plants, while little is known about its role in deciduous trees. The aim of this work was to evaluate the effect of foliar application of Si on chestnut leaf growth, photosynthesis and water relations in the presence of short, but intense water deficit.

Methods

Sili-K® solution (containing 0.12 % Si and 0.15 % K) was repeatedly (× 3) sprayed onto leaves of potted chestnut plantlets and irrigation was suspended 7 weeks later, for 8 days. Leaf growth, anatomy, as well as physiological and biochemical traits of the plantlets were studied.

Results

Si application enhanced chestnut growth, due to increased photosynthetic traits, including higher chlorophyll content and chlorophyll a to b ratio, photochemical efficiency of PSII, gas exchange (stomatal conductance, transpiration rate, net CO2 assimilation) and oxygen evolution rate. Meanwhile, Si yielded larger and thinner leaves, higher xylem, specific leaf area and transpiration rate, thus being beneficial to the tree in absorbing sunlight energy for photosynthesis and in alleviating heat stress. However, Si also lowered leaf sap osmotic pressure, causing the plant to lose water more quickly, thus being more susceptible to water stress.

Conclusions

Si improved chestnut photosynthesis, growth, and heat stress tolerance, but it also increased the susceptibility to drought.  相似文献   

17.
The use of the photochemical reflectance index (PRI) as a promising proxy of light use efficiency (LUE) has been extensively studied, and some issues have been identified, notably the sensitivity of PRI to leaf pigment composition and the variability in PRI response to LUE because of stress. In this study, we introduce a method that enables us to track the short‐term PRI response to LUE changes because of photosynthetically active radiation (PAR) changes. The analysis of these short‐term relationships between PRI and LUE throughout the growing season in two species (Quercus robur L. and Fagus sylvatica L.) under two different soil water statuses showed a clear change in PRI response to LUE, which is related to leaf pigment content. The use of an estimated or approximated PRI0, defined as the PRI of perfectly dark‐adapted leaves, allowed us to separate the PRI variability due to leaf pigment content changes and the physiologically related PRI variability over both daily (PAR‐related) and seasonal (soil water content‐related) scales. The corrected PRI obtained by subtracting PRI0 from the PRI measurements showed a good correlation with the LUE over both of the species, soil water statuses and over the entire growing season.  相似文献   

18.
Assessing leaf pigment content and activity with a reflectometer   总被引:45,自引:1,他引:45  
This study explored reflectance indices sampled with a 'leaf reflectometer' as measures of pigment content for leaves of contrasting light history, developmental stage and functional type (herbaceous annual versus sclerophyllous evergreen). We employed three reflectance indices: a modified normalized difference vegetation index (NDVI), an index of chlorophyll content; the red/green reflectance ratio ( R RED: R GREEN), an index of anthocyanin content; and the change in photochemical reflectance index upon dark–light conversions (ΔPRI), an index of xanthophyll cycle pigment activity. In Helianthus annuus (sunflower), xanthophyll cycle pigment amounts were linearly related to growth light environment; leaves in full sun contained approximately twice the amount of xanthophyll cycle pigments as leaves in deep shade, and at midday a larger proportion of these pigments were in the photoprotective, de-epoxidized forms relative to shade leaves. Reflectance indices also revealed contrasting patterns of pigment development in leaves of contrasting structural types (annual versus evergreen). In H. annuus sun leaves, there was a remarkably rapid increase in amounts of both chlorophyll and xanthophyll cycle pigments along a leaf developmental sequence. This pattern contrasted with that of Quercus agrifolia (coast live oak, a sclerophyllous evergreen), which exhibited a gradual development of both chlorophyll and xanthophyll cycle pigments along with a pronounced peak of anthocyanin pigment content in newly expanding leaves. These temporal patterns of pigment development in Q. agrifolia leaves suggest that anthocyanins and xanthophyll cycle pigments serve complementary photoprotective roles during early leaf development. The results illustrate the use of reflectance indices for distinguishing divergent patterns of pigment activity in leaves of contrasting light history and functional type.  相似文献   

19.
20.

Background

Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency.

Results

77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions.

Conclusions

Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号