首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.  相似文献   

2.
Guo H  Moose SP 《The Plant cell》2003,15(5):1143-1158
Surveys for conserved noncoding sequences (CNS) among genes from monocot cereal species were conducted to assess the general properties of CNS in grass genomes and their correlation with known promoter regulatory elements. Initial comparisons of 11 orthologous maize-rice gene pairs found that previously defined regulatory motifs could be identified within short CNS but could not be distinguished reliably from random sequence matches. Among the different phylogenetic footprinting algorithms tested, the VISTA tool yielded the most informative alignments of noncoding sequence. VISTA was used to survey for CNS among all publicly available genomic sequences from maize, rice, wheat, barley, and sorghum, representing >300 gene comparisons. Comparisons of orthologous maize-rice and maize-sorghum gene pairs identified 20 bp as a minimal length criterion for a significant CNS among grass genes, with few such CNS found to be conserved across rice, maize, sorghum, and barley. The frequency and length of cereal CNS as well as nucleotide substitution rates within CNS were consistent with the known phylogenetic distances among the species compared. The implications of these findings for the evolution of cereal gene promoter sequences and the utility of using the nearly completed rice genome sequence to predict candidate regulatory elements in other cereal genes by phylogenetic footprinting are discussed.  相似文献   

3.
Conserved noncoding sequences are reliable guides to regulatory elements   总被引:29,自引:0,他引:29  
A 'working draft' of the human genome sequence is now available. Comparisons with the sequences of mouse and other species will be a powerful approach to identifying functional segments of the noncoding regions, such as gene regulatory elements. However, the choice of a species for most effective comparison differs among various loci.  相似文献   

4.
5.
6.
Mitchison NA 《Genome biology》2001,2(1):comment2001.1-comment20016
The extensive polymorphism revealed in non-coding gene-regulatory sequences, particularly in the immune system, suggests that this type of genetic variation is functionally and evolutionarily far more important than has been suspected, and provides a lead to new therapeutic strategies.  相似文献   

7.
N A Mitchison 《Genome biology》2000,2(1):comment200
The extensive polymorphism revealed in non-coding gene-regulatory sequences, particularly in the immune system, suggests that this type of genetic variation is functionally and evolutionarily far more important than has been suspected, and provides a lead to new therapeutic strategies.  相似文献   

8.
An algorithm for modeling the evolution of the regulatory signals involving the interaction with RNA secondary structure is proposed. The algorithm implies that the species phylogenetic tree is known and is based on the assumption that the considered signals have a conserved secondary structure. The input data are the extant primary structure of a signal for all leaves of the phylogenetic tree; the algorithm computes the signal primary and secondary structures at all the nodes. Concurrently, the algorithm constructs a multiple alignment of the extant (in leaves) sites of a regulatory signal taking into account its secondary structure. The results of successful testing of the algorithm for three main types of attenuation regulation in bacteria—classic attenuation (threonine and leucine biosyntheses in Gammaproteobacteria), T-box (in Actinobacteria), and RFN-mediated (in Eubacteria) regulations—are described.  相似文献   

9.
An algorithm is proposed for extracting regulatory signals from DNA sequences. The algorithm complexity is nearly quadratic. The results of testing the algorithm on artificial and natural sequences are presented.  相似文献   

10.
G Colwell  B Li  D Forrest  R Brackenbury 《Genomics》1992,14(4):875-882
Genomic clones containing 5'-flanking sequences, the first exon, and the entire first intron from the chicken N-CAM gene were characterized by restriction mapping and DNA sequencing. A > 600-bp segment that includes the first exon is very G + C-rich and contains a large proportion of CpG dinucleotides, suggesting that it represents a CpG island. SP-1 and AP-1 consensus elements are present, but no TATA- or CCAAT-like elements were found within 300 bp upstream of the first exon. Comparison of the chicken promoter region sequence with similar regions of the human, rat, and mouse N-CAM genes revealed that some potential regulatory elements including a "purine box" seen in mouse and rat N-CAM genes, one of two homeodomain binding regions seen in mammalian N-CAM genes, and several potential SP-1 sites are not conserved within this region. In contrast, high CpG content, a homeodomain binding sequence, an SP-1 element, an octomer element, and an AP-1 element are conserved in all four genes. The first intron of the chicken gene is 38 kb, substantially smaller than the corresponding intron from mammalian N-CAM genes. Together with previous studies, this work completes the cloning of the chicken N-CAM gene, which contains at least 26 exons distributed over 85 kb.  相似文献   

11.
12.
Plesch G  Kamann E  Mueller-Roeber B 《Gene》2000,249(1-2):83-89
This report describes the use of promoter trap lines from the model plant Arabidopsis thaliana to clone regulatory sequences that mediate guard-cell-specific reporter gene expression. Stomatal guard cells represent a highly differentiated cell type within the epidermis of green tissues of higher plants. They control the stomatal aperture in response to different endogenous and environmental signals in order to optimize carbon fixation while minimizing water loss. We screened available promoter trap lines for guard-cell-specific activation of a beta-glucuronidase (uidA) reporter gene in order to obtain marker lines for guard-cell development and to gain access to regulatory pathways leading to gene expression which is restricted to this cell type. From two lines identified we successfully cloned upstream regulatory sequences. For one line, guard-cell-specific promoter activity was confirmed by re-introducing the uidA gene, fused to the newly identified regulatory sequences, into the Arabidopsis nuclear genome. However, DNA sequences downstream of the uidA/T-DNA insertion sites in the original promoter trap lines revealed no obvious coding regions in the corresponding orientation, indicating that we have probably identified 'cryptic' promoters, being active in guard cells.  相似文献   

13.
Physical contact between genes distant on chromosomes is a potentially important way for genes to coordinate their expressions.To investigate the potential importance of distant contacts,we performed high-throughput chromatin conformation capture(Hi-C) experiments on leaf nuclei isolated from Brassica rapa and Brassica oleracea.We then combined our results with published Hi-C data from Arabidopsis thaliana.We found that distant genes come into physical contact and do so preferentially between th...  相似文献   

14.
15.
We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.  相似文献   

16.
Dosage compensation in Drosophila is mediated by genes known as "male-specific lethals" (msls). Several msls, including male-specific lethal-3 (msl-3), encode proteins of unknown function. We cloned the Drosophila virilis msl-3 gene. Using the information provided by the sequences of the Drosophila melanogaster and D. virilis genes, we found that sequences of other species can be aligned along their entire lengths with msl-3. Among them, there are genes in yeasts (the Schizosaccharomyces pombe Alp13 gene, as well as a putative Alp13 homolog, found in Saccharomyces cerevisae) and in mammals (MRG15 and MSL3L1 and their relatives) plus uncharacterized sequences of the nematode Caenorhabditis elegans and the plants Arabidopsis thaliana, Lycopersicon esculentum, and Zea mays. A second Drosophila gene of this family has also been found. It is thus likely that msl-3-like genes are present in all eukaryotes. Phylogenetic analyses suggest that msl-3 is orthologous to the mammalian MSL3L1 genes, while the second Drosophila melanogaster gene (which we have called Dm MRG15) is orthologous to mammalian MRG15. These analyses also suggest that the msl-3/MRG15 duplication occurred after the fungus/animal split, while an independent duplication occurred in plants. The proteins encoded by these genes have similar structures, including a putative chromodomain close to their N-terminal end and a putative leucine zipper at their C-terminus. The possible functional roles of these proteins are discussed.  相似文献   

17.
18.
19.
During plant evolution, genome duplication and subsequent selection acting on new gene pairs has frequently resulted in partition of gene functions, or acquisition of new functions. This 'sub- and neofunctionalisation' (subF and neoF) is held to have driven the expansion of key gene classes. One such gene class in maize (Zea mays) includes a pair of Polycomb group (PcG) protein genes that, unlike their single Arabidopsis (Arabidopsis thaliana) counterpart, are both parentally imprinted with only the maternal alleles being expressed in the seed endosperm. Surprisingly, this imprinting is regulated by different mechanisms in the two genes, resulting in different phasing of parent-specific expression. In this opinion article we propose that recruitment of different imprinting systems constitutes 'epigenetic neoF', and has enhanced maternal control over seed development, with a potential impact on the evolution of the large and persistent endosperms of cereal grains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号