首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

2.

Key message

Improving Agrobacterium -mediated transformation frequency and event quality by increasing binary plasmid copy number and appropriate strain selection is reported in an elite maize cultivar.

Abstract

Agrobacterium-mediated maize transformation is a well-established method for gene testing and for introducing useful traits in a commercial biotech product pipeline. To develop a highly efficient maize transformation system, we investigated the effect of two Agrobacterium tumefaciens strains and three different binary plasmid origins of replication (ORI) on transformation frequency, vector backbone insertion, single copy event frequency (percentage of events which are single copy for all transgenes), quality event frequency (percentage of single copy events with no vector backbone insertions among all events generated; QE) and usable event quality frequency (transformation frequency times QE frequency; UE) in an elite maize cultivar PHR03. Agrobacterium strain AGL0 gave a higher transformation frequency, but a reduced QE frequency than LBA4404 due to a higher number of vector backbone insertions. Higher binary plasmid copy number positively correlated with transformation frequency and usable event recovery. The above findings can be exploited to develop high-throughput transformation protocols, improve the quality of transgenic events in maize and other plants.
  相似文献   

3.
4.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet r ) and lincomycin (lin r ) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative p19cat plasmid producing a hybrid plasmid. Insertion frequency was 10?4?10?5. Then genes tet r and lin r were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F′ and R′ plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

5.

Background

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a major insect pest that negatively impacts commercial grapevine performance worldwide. Consequently, the use of phylloxera resistant rootstocks is an essential component of vineyard management. However, the majority of commercially available rootstocks used in viticulture production provide limited levels of grape phylloxera resistance, in part due to the adaptation of phylloxera biotypes to different Vitis species. Therefore, there is pressing need to develop new rootstocks better adapted to specific grape growing regions with complete resistance to grape phylloxera biotypes.

Results

Grapevine rootstock breeding material, including an accession of Vitis cinerea and V. aestivalis, DRX55 ([M. rotundifolia x V. vinifera] x open pollinated) and MS27-31 (M. rotundifolia specific hybrid), provided complete resistance to grape phylloxera in potted plant assays. To map the genetic factor(s) of grape phylloxera resistance, a F1 V. cinerea x V. vinifera Riesling population was screened for resistance. Heritability analysis indicates that the V. cinerea accession contained a single allele referred as RESISTANCE TO DAKTULOSPHAIRA VITIFOLIAE 2 (RDV2) that confers grape phylloxera resistance. Using genetic maps constructed with pseudo-testcross markers for V. cinerea and Riesling, a single phylloxera resistance locus was identified in V. cinerea. After validating SNPs at the RDV2 locus, interval and linkage mapping showed that grape phylloxera resistance mapped to linkage group 14 at position 16.7 cM.

Conclusion

The mapping of RDV2 and the validation of markers linked to grape phylloxera resistance provides the basis to breed new rootstocks via marker-assisted selection that improve vineyard performance.
  相似文献   

6.
Plasmid pBS501 was detected in the strain Comamonas sp. BS501. This plasmid specifies high level of induced resistance (5 mM) to cobalt/nickel both in the host strain and in related strains C. testosteroni B-1241 and C. acidovorans B-1251. Hybridization analysis revealed a homology of pBS501 restriction fragments with the only well-characterized operon cnrXYHCBAT that resides in plasmid pMOL28 from Cupriavidus metallidurans CH34. Essential differences in the structural organization of the cobalt/nickel resistance determinant were found between plasmid pBS501 and the cnr operon.  相似文献   

7.
The application of the green alga Chlamydomonas reinhardtii as a bioreactor is not adequate because of the difficulties caused by efficiency expressing foreign genes. To improve this efficiency a plasmid containing the epidermal growth factor (EGF) gene and a bleomycin resistance gene (ble) was constructed. We amplified the EGF gene according to the codon usage of C. reinhardtii. The vector carrying 2 expression cassettes for EGF gene and ble gene was constructed by adding rbc promoter and rbc terminator. Transformants, selected on Tris-acetate-phosphate medium containing 15 mg/L bleomycin, were screened by PCR and confirmed by Southern blotting, which showed that 3 transgenic C. reinhardtii cells contained only one copy of EGF gene integrated in different 3 sites of C. reinhardtii CC400 genome. Then EGF protein content of 3 transformants was determined by EGF precoated ELISA, indicating that EGF gene was first expressed, although at a low level, in algal cells. The presented study, as an example for expressing heterologous gene in green alga, provided feasibility to improve the efficiency of transformation of C. reinhardtii.  相似文献   

8.

Background

Alzheimer’s disease (AD) is characterized by progressive memory loss and impaired cognitive function. Early-onset familial forms of the disease (FAD) are caused by inheritance of mutant genes encoding presenilin 1 (PS1) variants. We have demonstrated that prion promoter (PrP)-driven expression of human FAD-linked PS1 variants in mice leads to impairments in environmental enrichment (EE)-induced adult hippocampal neural progenitor cell (AHNPC) proliferation and neuronal differentiation, and have provided evidence that accessory cells in the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes, in vivo. While of significant interest, these latter studies relied on transgenic mice that express human PS1 variant transgenes ubiquitously and at high levels, and the consequences of wild type or mutant PS1 expressed under physiologically relevant levels on EE-mediated AHNPC phenotypes has not yet been tested.

Results

To assess the impact of mutant PS1 on EE-induced AHNPC phenotypes when expressed under physiological levels, we exposed adult mice that constitutively express the PSEN1 M146V mutation driven by the endogenous PSEN1 promoter (PS1 M146V “knock-in” (KI) mice) to standard or EE-housed conditions. We show that in comparison to wild type PS1 mice, AHNPCs in mice carrying homozygous (PS1 M146V/M146V ) or heterozygous (PS1 M146V/+ ) M146V mutant alleles fail to exhibit EE-induced proliferation and commitment towards neurogenic lineages. More importantly, we report that the survival of newborn progenitors are diminished in PS1 M146V KI mice exposed to EE-conditions compared to respective EE wild type controls.

Conclusions

Our findings reveal that expression at physiological levels achieved by a single PS1 M146V allele is sufficient to impair EE-induced AHNPC proliferation, survival and neuronal differentiation, in vivo. These results and our finding that microglia expressing a single PS1 M146V allele impairs the proliferation of wild type AHNPCs in vitro argue that expression of mutant PS1 in the AHNPC niche impairs AHNPCs phenotypes in a dominant, non-cell autonomous manner.
  相似文献   

9.
We generated 383 independent transgenic lines that contained the PsGPD (Glyceraldehyde-3-Phosphate Dehydrogenase), ArCspA (Cold Shock Protein), BrTSR15 (Triple Stress Resistance 15) and BrTSR53 (Triple Stress Resistance 53) genes under the control of a constitutive (CaMV 35S) promoter to generate genetically modified (GM) rice. TaqMan copy number assay was performed to determine the copy numbers of inserted T-DNA. Flanking sequence tags (FSTs) were isolated from 203 single copy T-DNA lines of transgenic plants, and their sequences were mapped to the rice chromosomes. Of the 157 flanking sequence tags that were isolated from single copy lines, transgenes were found to be integrated into genic regions in 58 lines (36 %), whereas 97 lines (62 %) contained transgene insertions in intergenic regions. Approximately 27 putative homozygous lines were obtained through multi-generations of planting, resistance screening and TaqMan copy number assays. To investigate the transgene expression patterns, quantitative real-time PCR analysis was performed using total RNA from leaf tissue of homozygous T1 plants with a single copy and an intergenic insertion of T-DNA. The mRNA expression levels of the examined transgenic rice were significantly increased in all transgenic plants. In addition, myc-tagged 35S:BrTSR15 and 35S:BrTSR53 transgenic plants displayed higher levels of transgene protein. Using numerical data for the mass production of transgenic plants can reduce the time required to obtain a genetically modified plant. Moreover, the duration, cost, and efforts required for transformation can be deliberately predicted. These results may be useful for the large-scale production of transgenic plants or T-DNA inserted rice mutants.  相似文献   

10.
For reasons of efficiency Escherichia coli is used today as the microbial factory for production of plasmid DNA vaccines. To avoid hazardous antibiotic resistance genes and endotoxins from plasmid systems used nowadays, we have developed a system based on the food-grade Lactococcus lactis and a plasmid without antibiotic resistance genes. We compared the L. lactis system to a traditional one in E. coli using identical vaccine constructs encoding the gp120 of HIV-1. Transfection studies showed comparable gp120 expression levels using both vector systems. Intramuscular immunization of mice with L. lactis vectors developed comparable gp120 antibody titers as mice receiving E. coli vectors. In contrast, the induction of the cytolytic response was lower using the L. lactis vector. Inclusion of CpG motifs in the plasmids increased T-cell activation more when the E. coli rather than the L. lactis vector was used. This could be due to the different DNA content of the vector backbones. Interestingly, stimulation of splenocytes showed higher adjuvant effect of the L. lactis plasmid. The study suggests the developed L. lactis plasmid system as new alternative DNA vaccine system with improved safety features. The different immune inducing properties using similar gene expression units, but different vector backbones and production hosts give information of the adjuvant role of the silent plasmid backbone. The results also show that correlation between the in vitro adjuvanticity of plasmid DNA and its capacity to induce cellular and humoral immune responses in mice is not straight forward.  相似文献   

11.

Background

In recent years, New Delhi metallo-beta-lactamases 1 (bla NDM-1) has been reported with increasing frequency and become prevalent. The present study was undertaken to investigate the epidemiological dissemination of the bla NDM-1 gene in Enterobacter cloacae isolates at a teaching hospital in Yunnan, China.

Methods

Antimicrobial susceptibility testing was performed using VITEK 2 system and E test gradient strips. The presence of integrons and insertion sequence common region 1 were examined by PCR and sequencing. Clonal relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Conjugation experiments and Southern blot hybridization were performed to determine the transferability of plasmids.

Results

Ten E. cloacae isolates and their Escherichia coli transconjugants were exhibited similar resistant patterns to carbapenems, cephalosporins and penicillins. 8 (80%) of E. cloacae isolates carried class 1 integron and 1 (12.5%) carried class 2 integron. Integron variable regions harbored the genes which encoded resistance to aminoglycosides (aadA1, aadA2, aadA5, aadB, aac(6′)-Ib-cr), sulfamethoxazole/trimethoprim (dfrA17, dfrA12, dfrA15) and Streptozotocin (sat2). Six E. cloacae isolates belonged to ST74 and exhibited highly similar PFGE patterns. Each isolate shared an identical plasmid with ~33.3 kb size that carried the bla NDM-1 gene, except T3 strain, of which the bla NDM-1 gene was located on a ~50 kb plasmid.

Conclusions

Our findings suggested that plasmid was able to contribute to the dissemination of bla NDM-1. Hence, more attention should be devoted to monitor the dissemination of the bla NDM-1 gene due to its horizontal transfer via plasmid. In addition, nosocomial surveillance system should actively monitor the potential endemic clone of ST74 to prevent their further spread.
  相似文献   

12.
Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.  相似文献   

13.
Agrobacterium-mediated transformation is a complex process that is widely utilized for generating transgenic plants. However, one of the major concerns of this process is the frequent presence of undesirable T-DNA vector backbone sequences in the transgenic plants. To mitigate this deficiency, a ternary strain of A. tumefaciens was modified to increase the precision of T-DNA border nicking such that the backbone transfer is minimized. This particular strain supplemented the native succinamopine VirD1/VirD2 of EHA105 with VirD1/VirD2 derived from an octopine source (pTi15955), the same source as the binary T-DNA borders tested here, residing on a ternary helper plasmid containing an extra copy of the succinamopine VirB/C/G operons and VirD1. Transformation of maize immature embryos was carried out with two different test constructs, pDAB101556 and pDAB111437, bearing the reporter YFP gene and insecticidal toxin Cry1Fa gene, respectively, contained in the VirD-supplemented and regular control ternary strains. Molecular analyses of?~?700 transgenic events revealed a significant 2.6-fold decrease in events containing vector backbone sequences, from 35.7% with the control to 13.9% with the VirD-supplemented strain for pDAB101556 and from 24.9% with the control to 9.3% with the VirD-supplemented strain for pDAB111437, without compromising transformation efficiency. In addition, while the number of single copy events recovered was similar, there was a 24–26% increase in backbone-free events with the VirD-supplemented strain compared to the control strain. Thus, supplementing existing VirD1/VirD2 genes in Agrobacterium, to recognize diverse T-DNA borders, proved to be a useful tool to increase the number of high quality events in maize.  相似文献   

14.

Key message

A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS–LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed.

Abstract

Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites–leucine-rich repeat (NBS–LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.
  相似文献   

15.
16.
17.
18.
Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.  相似文献   

19.
20.
Salmonella enterica serovar Enteritidis is one of the majorSalmonella serovars which may cause animal infections and human salmonellosis. In this study, two hundred forty five samples (faeces, water and environmental swabs) were taken from eight poultry farms localized in different geographical areas of Tunisia. We foundSalmonella serovar Enteritidis (16 strains),Salmonella typhimirium (2),Salmonella scharzengrund (2), andSalmonella braenderup (1).Salmonella Enteritidis strains were characterized by pulsed field gel electrophoresis (PFGE) analysis, plasmid analysis and antibiotic resistance profiles.XbaI PFGE analysis revealed two PFGE types and plasmid profiling identified four plasmid types. The majority of isolates were susceptible to all antibiotic tested. The combined use of phenotypic and genotypic methods indicates the spread of a particularSalmonella Enteritidis clone. This clone is highly related to a major world-wide clone identified in many other countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号