首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
《BMJ (Clinical research ed.)》1980,280(6213):507-508
  相似文献   

7.
8.
9.
10.
11.
Drosophila females engage in multiple matings [1] [2] [3] [4] even though they can store sperm in specialized organs for most of their life [5]. The existence of sperm competition in Drosophila has been inferred from the proportion of progeny sired by the second male in double-mating experiments [6] [7] [8]. Investigators have used this approach to quantify genetic variation underlying sperm competition [8] [9] [10], to elucidate its genetic basis [11], to identify the dependence of different male competitive ability on the genotype of the females with which they mate [12] and to discern the potential role of sperm competition in species isolation [13] [14]. This approach assumes that the sperm from two males stored in a female compete to fertilize the eggs. The mechanism by which sperm competition is accomplished is still unknown, however. Here, fluorescence microscopy, cytometry, and differently labeled sperm were used to analyze the fate of sperm inside the female's sperm storage organs, to quantify sperm competition, and to assess how closely paternity success corresponds to the appearance and location of the sperm. The results show that the first male's sperm is retained for a shortened period if the female remates, and that the second males that sire more progeny either induce females to store and use more of their sperm or strongly displace resident sperm.  相似文献   

12.
W. G. Thompson 《CMAJ》1974,111(4):302-303
  相似文献   

13.
14.
M. Korcok 《CMAJ》1978,118(10):1320-6
  相似文献   

15.
16.
17.
18.
19.
20.
Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号