首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Bacteria under stress conditions of excess of carbon (C) and limitations of nutrients divert its metabolism towards C storage as energy reservoir—polyhydroxyalkanoate (PHA). Different Bacillus species—B. cereus and B. thuringiensis, were monitored to produce PHA from different C sources—glucose, crude glycerol and their combination at 37 °C for period up to 192 h. PHA production and its composition was found to vary with feed and bacterial strains. PHA production on crude glycerol continued to increase up to 120 h, reaching a maximum of 2725 mg/L with an effective yield of 71% of the dry cell mass. Depolymerization of PHA was observe to initiate after 96 h of incubation up to 192 h. PHA degradation products have been envisaged to be applied in medical field: tissue engineering, drug carriers, memory enhancers, antiosteoporosis, biodegradable implants. The PHA production and degradation cycle for 192 h has not been reported previously in literature.  相似文献   

2.
The present research investigates the effect of Piriformospora indica, an endophytic fungus, on production of protoberberine alkaloids in in vitro cell suspension cultures of Tinospora cordifolia. Although T. cordifolia produces a number of protoberberine alkaloids, the simultaneous production of jatrorrhizine and palmatine in cell suspension cultures of T. cordifolia was observed for the first time with the use of P. indica as biotic elicitor. The cells in suspension cultures were elicitated with P. indica on 14th day of culture initiation and the production of the alkaloids on 16th day was monitored. The autoclaved as well as filter sterilized cultures of P. indica were used in addition to the use of fungal cell extract. The elicitor effect of P. indica was analyzed and compared with other abiotic elicitor (methyl jasmonate) and biotic elicitors (chitin and chitosan). The culture filtrate of P. indica in the filter sterilized (5.0% v/v) form gave better response with enhanced 4.2-fold production of jatrorrhizine (10.72 mg/g DW) and 4.0-fold production of palmatine (4.39 mg/g DW). The production of these compounds was at par with that achieved in methyl jasmonate (at 250 µM) treated cell suspension cultures.  相似文献   

3.
A triplicate volcanic rock matrix–Bacillus thuringiensis–laccase WlacD (VRMs–Bt–WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn)2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn)2–WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9(34)-orthogonal test, Plackett–Burman test, steepest ascent method, and Box–Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L?1, which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs–Bt–WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs–Bt–WlacD toward an initial concentration of 500 mg L?1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g–100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs–Bt–WlacD and have the potential for large-scale or continuous operations.  相似文献   

4.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

5.
The citrus fruit borer, Ecdytolopha aurantiana (Lima, 1927) (Lepidoptera: Tortricidae), is responsible for major losses to the citrus industry because it causes rot and drop of fruits. The current study aimed to select and characterize Bacillus thuringiensis (Berliner, 1911) strains toxic to E. aurantiana. For this purpose, 47 B. thuringiensis strains were evaluated in selective bioassays using first instar larvae of E. aurantiana. The lethal concentration (LC50) of the most toxic strains was estimated, and the strains were characterized by morphological, biochemical, and molecular methods. Of the 47 strains tested, 10 caused mortality above 85% and showed mean lethal concentrations between 1.05E+7 and 1.54E+8 spores mL?1. The lowest LC50 values were obtained for the HD-1 standard strain and the BR145, BR83, BR52, and BR09 strains. The protein profile showed the presence of Cry proteins of 60, 65, 70, 80, and 130 kDa. The molecular characterization showed the presence of cry1, cry2, cry3, and cry11 genes. The morphological analysis identified three different crystalline inclusions: bipyramidal, round, and cuboidal. The cry1 and cry2 genes were the most frequent among the B. thuringiensis strains evaluated and encode Cry proteins toxic to insects of the order Lepidoptera, which agree with the toxicity results obtained by the selective bioassays against E. aurantiana. The results showed four different B. thuringiensis strains toxic to E. aurantiana at the same level as the HD-1 standard strain, and these strains have biotechnological potential for E. aurantiana control through the production of transgenic plants or the formulation of biopesticides.  相似文献   

6.
A total of 15 endophytic Bacillus thuringiensis isolates were obtained from root nodules of six legumes (soybean, ricebean, gahat, frenchbean, lentil and pea). All of these isolates were characterized by the presence of one of two different types of crystalline inclusions (spherical and bipyramidal) and tolerance to a wide pH range (4–10; optimum 7.0) and NaCl concentrations up to 8%. Genetic diversity among the B. thuringiensis isolates was determined by repetitive extragenic palindromic PCR assays (rep-PCR) using the Bacillus cereus-repetitive extragenic palindromic, BOX, enterobacterial repetitive intergenic consensus sequence and (GTG)5 primers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteogram of the B. thuringiensis isolates revealed the presence of two major polypeptides (24.4 and 131.0 kDa). Maximum crystal protein profile was observed in the B. thuringiensis isolates producing the spherical crystal, while those isolates producing the bipyramidal crystal protein showed four four major polypeptides (24.4, 33.8, 81.2 and 131.0 kDa). The purified crystal protein profile of the B. thuringiensis isolates revealed the presence of only one major protein of 130 kDa mass. Isolates VRB1 and VLG15 possessing the cry1 and cry2 family genes demonstrated 100% mortality against first-instar larvae of the Bihar hairy caterpillar (lepidopteran pest). Our study of the ecological and molecular diversity among newly identified B. thuringiensis isolates suggests that these could be useful in planning new strategies for integrated pest management in sustainable agricultural systems.  相似文献   

7.
In order to produce enantiomerically pure epoxides for the synthesis of value-added chemicals, a novel putative epoxide hydrolase (EH) sgeh was cloned and overexpressed in pET28a/Escherichia coli BL21(DE3). The 1047 bp sgeh gene was mined from Streptomyces griseus NBRC 13350 genome sequence. The recombinant hexahistidyl-tagged SGEH was purified (16.6-fold) by immobilized metal-affinity chromatography, with 90% yield as a homodimer of 100 kDa. The recombinant E. coli whole cells overexpressing SGEH could kinetically resolve racemic phenyl glycidyl ether (PGE) into (R)-PGE with 98% ee, 40% yield, and enantiomeric ratio (E) of 20. This was achieved under the optimized reaction conditions i.e. cell/substrate ratio of 20:1 (w/w) at pH 7.5 and 20?°C in 10% (v/v) dimethylformamide (DMF) in a 10 h reaction. 99% enantiopure (R)-PGE was obtained when the reaction time was prolonged to 12 h with a yield of 34%. In conclusion, an economically viable and environment friendly green process for the production of enantiopure (R)-PGE was developed by using wet cells of E. coli expressing recombinant SGEH.  相似文献   

8.
Insecticides based on crystalline toxins of Bacillus thuringiensis are very good biological plant protection products. However, the spectrum of activity of some toxins is narrow or resistance among insects has been developed. We tested the insecticidal activity of crystals of the B. thuringiensis MPU B9 strain alone and supplemented with Vip3Aa proteins against important pests: Spodoptera exigua Hübner (Lepidoptera: Noctuidae), Cydia pomonella L. (Lepidoptera: Tortricidae) and Dendrolimus pini L. (Lepidoptera: Lasiocampidae). The Cry toxins were more active for D. pini but less active against S. exigua and C. pomonella than Vip3Aa. Supplementation of Cry toxins by small amounts of vegetative insecticidal proteins demonstrated synergistic effect and significantly enhanced the toxicity of the insecticide. The results indicate the utility of Cry and Vip3Aa toxins mixtures to control populations of crops and forests insect pests.  相似文献   

9.
A Cry46Ab toxin derived from Bacillus thuringiensis strain TK-E6 shows mosquitocidal activity against Culex pipiens pallens Coquillett (Diptera: Culicidae) larvae as well as preferential cytotoxicity against human cancer cells. In B. thuringiensis cells, Cry46Ab is produced and accumulates as a protein crystal that is processed into the active 29-kDa toxin upon solubilization in the alkaline environment of the insect midgut. The Cry46Ab protoxin is 30 kDa, and is therefore thought to require an accessory protein such as P20 and/or ORF2 for efficient crystal formation. In the present study, the potency of the 4AaCter-tag was investigated for the production of alkali-soluble inclusion bodies of recombinant Cry46Ab in Escherichia coli. The 4AaCter-tag is a polypeptide derived from the C-terminal region of the B. thuringiensis Cry4Aa toxin and facilitates the formation of alkali-soluble protein inclusion bodies in E. coli. Fusion with the 4AaCter-tag enhanced both Cry46Ab production and the formation of Cry46Ab inclusion bodies. In addition, upon optimization of protein expression procedures, the Cry46Ab–4AaCter inclusion bodies showed mosquitocidal activity and stability in aqueous environments comparable to Cry46Ab without the 4AaCter-tag. Our study suggests that use of the 4AaCter-tag is a straightforward approach for preparing formulations of smaller-sized Cry toxins such as Cry46Ab in E. coli.  相似文献   

10.
Stilbenes, including trans-resveratrol (3,4′,5-trihydroxy-trans-stilbene), are known to exert beneficial health effects and contribute to plant biotic stress resistance. Much remains to be discovered about the cell signaling pathways regulating stilbene biosynthesis. It has recently been shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased t-resveratrol accumulation in cell cultures of Vitis amurensis. In this study, we analyzed the involvement of other CDPK family members, VaCPK1 and VaCPK26, on stilbene synthesis and biomass production by cell cultures of V. amurensis. We showed that overexpression of the VaCPK1 and 26 genes induced production of stilbenes by 1.7–4.6-fold (for VaCPK1) and by 2.5–6.2-fold (for VaCPK26) in several independently established cell lines compared to the empty vector-transformed control. Using HPLC-UV-MS, we detected five stilbenes in the grape cells: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε- and δ-viniferin. The VaCPK1- and VaCPK26-transformed calli were capable of producing 1.4–3.1 and 1.8–4.9 mg/l of t-resveratrol, respectively (up to 0.4 for and 0.6 mg/g of dry weight for VaCPK26 and VaCPK1, respectively), while the control line synthesized only 0.5 mg/l of t-resveratrol (0.07 mg/g DW). The up-regulation of t-resveratrol production in the VaCPK1- and VaCPK26-overexpressing grape calli correlated with a significant up-regulation of stilbene synthase (STS) gene expression, especially VaSTS7. The data indicate that VaCPK1 and 26 genes, which are close homologues of VaCPK20, are positive regulators of stilbene biosynthesis in grapevine.  相似文献   

11.
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min?1 mg?1, a K m of 1.8 μM, and a k cat of 1.7 min?1 for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD + as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l?1, and 2,200 mg all-trans-retinal l?1 in the presence of 5 % (v/v) methanol, 1 % (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l?1 after 3 h, with a conversion yield of 27.3 % (w/w) and a productivity of 200 mg l?1 h?1. This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.  相似文献   

12.
13.
The purpose of this study was to elucidate whether exogenous nitric oxide (NO) has a potential beneficial effect on lipase production capacity of some microorganisms. Sodium nitroprusside (SNP) was used as an exogenous NO donor in production medium. In comparison with the control (0 nM SNP), SNP concentrations from 10 to 100 nM induced lipase production in mesophilic bacterium Bacillus subtilis and cold-adapted yeast Yarrowia lipolytica. Especially, the maximum lipase activities for Y. lipolytica (81.2 U/L) and B. subtilis (74.5 U/L) were attained at 30 and 50 nM SNP concentrations, respectively. When compared to the control, the optimal SNP concentrations resulted in about 5.14 and 2.27-fold increases in lipase activities of B. subtilis and Y. lipolytica, respectively. Besides, it was found that the optimal SNP concentrations provided shorter incubation periods for lipase production. Conversely, no significant positive effect of exogenous NO on lipase production was determined for thermophilic bacterium Geobacillus stearothermophilus. This study showed for the first time that exogenous NO could be used as an inducer in the production of microbial lipases.  相似文献   

14.
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that are synthesized by diverse bacteria. In this study, the synthesis of PHAs by the model aromatic-degrading strain Burkholderia xenovorans LB400 was analyzed. Twelve pha genes including three copies of phaC and five copies of the phasin-coding phaP genes are distributed among the three LB400 replicons. The phaC1ABR gene cluster that encodes the enzymes of the PHA anabolic pathway is located at chromosome 1 of strain LB400. During the growth of strain LB400 on glucose under nitrogen limitation, the expression of the phaC1, phaA, phaP1, phaR, and phaZ genes was induced. Under nitrogen limitation, PHA accumulation in LB400 cells was observed by fluorescence microscopy after Nile Red staining. GC-MS analyses revealed that the PHA accumulated under nitrogen limitation was poly(3-hydroxybutyrate) (PHB). LB400 cells grown on glucose as the sole carbon source under nitrogen limitation accumulated 40?±?0.96% PHB of the cell dry weight, whereas no PHA was observed in cells grown in control medium. The functionality of the phaC1 gene from strain LB400 was further studied using heterologous expression in a Pseudomonas putida KT40C1ZC2 mutant strain derived from P. putida KT2440 that is unable to synthesize PHAs. Interestingly, KT40C1ZC2[pVNC1] cells that express the phaC1 gene from strain LB400 were able to synthesize PHB (33.5% dry weight). This study indicates that B. xenovorans LB400 possesses a functional PHA synthetic pathway that is encoded by the pha genes and is capable of synthesizing PHB.  相似文献   

15.
In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.  相似文献   

16.
For recombinant production of squalene, which is a triterpenoid compound with increasing industrial applications, in microorganisms generally recognized as safe, we screened Saccharomyces cerevisiae strains to determine their suitability. A strong strain dependence was observed in squalene productivity among Saccharomyces cerevisiae strains upon overexpression of genes important for isoprenoid biosynthesis. In particular, a high level of squalene production (400 ± 45 mg/L) was obtained in shake flasks with the Y2805 strain overexpressing genes encoding a bacterial farnesyl diphosphate synthase (ispA) and a truncated form of hydroxyl-3-methylglutaryl-CoA reductase (tHMG1). Partial inhibition of squalene epoxidase by terbinafine further increased squalene production by up to 1.9-fold (756 ± 36 mg/L). Furthermore, squalene production of 2011 ± 75 or 1026 ± 37 mg/L was obtained from 5-L fed-batch fermentations in the presence or absence of terbinafine supplementation, respectively. These results suggest that the Y2805 strain has potential as a new alternative source of squalene production.  相似文献   

17.
Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5′- and 3′-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L?1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMSE analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L?1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.  相似文献   

18.
Dual metabolite, i.e., ginsenoside and anthocyanin, co-accumulating cell suspensions of Panax sikkimensis were subjected to elicitation with culture filtrates of Serratia marcescens (SD 21), Bacillus subtilis (FL11), Trichoderma atroviridae (TA), and T. harzianum (TH) at 1.25% and 2.5% v/v for 1- and 3-week duration. The fungal-derived elicitors (TA and TH) did not significantly affect biomass accumulation; however, bacterial elicitors (SD 21 and FL11), especially SD 21, led to comparable loss in biomass growth. In terms of ginsenoside content, differential responses were observed. A maximum of 3.2-fold increase (222.2 mg/L) in total ginsenoside content was observed with the use of 2.5% v/v TH culture filtrate for 1 week. Similar ginsenoside accumulation was observed with the use of 1-week treatment with 2.5% v/v SD 21 culture filtrate (189.3 mg/L) with a 10-fold increase in intracellular Rg2 biosynthesis (31 mg/L). Real-time PCR analysis of key ginsenoside biosynthesis genes, i.e., FPS, SQS, DDS, PPDS, and PPTS, revealed prominent upregulation of particularly PPTS expression (20–23-fold), accounting for the observed enhancement in protopanaxatriol ginsenosides. However, none of the elicitors led to successful enhancement in in vitro anthocyanin accumulation as compared to control values.  相似文献   

19.
Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.  相似文献   

20.
Aedes aegypti (L.) is the main vector of tropical diseases such as dengue, chikungunya and Zika. Due to the overuse of insecticides, Ae. aegypti resistant populations have increased. Biological control with Lysinibacillus sphaericus (Ahmed) has been used against Culex sp. and Anopheles sp. Although Ae. aegypti is refractory to the binary toxin of L. sphaericus spores, vegetative cells have been shown to be effective against Ae. aegypti larvae. In this work, the effect of L. sphaericus vegetative cells on Ae. aegypti temephos-resistant larvae was assessed under lab and simulated field conditions. L. sphaericus caused about 90% mortality of insecticide-resistant Ae. aegypti larvae under simulated field conditions. Likewise, Ae. aegypti larvae were more sensitive to mixed cultures of L. sphaericus than to individual strains; then, the most effective mixed culture exhibited an LC50 of 1.21 × 105 CFU/mL with Rockefeller larvae and 8.04 × 104 CFU/mL with field-collected larvae. Additionally, we found that mixed cultures composed of two L. sphaericus strains were more effective than a culture formed by the three strains. Our results suggest that mixed cultures comprising L. sphaericus vegetative cells could be useful for controlling temephos-resistant populations of Ae. aegypti, as evidenced by the effectiveness demonstrated under laboratory and simulated field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号