首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The human gut hosts a dense and diverse microbial community, spatially organized in multiple scales of structure. Here, we review how microbial organization differs between health and disease. We describe how changes in spatial organization may induce alterations in gut homeostasis, concluding with a future outlook to reveal causality.  相似文献   

2.
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host–microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host–microbe interaction and successful commensalism to institute a human gut microbiome.  相似文献   

3.
The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.  相似文献   

4.
The human microbiota plays an important role in human health and contributes to the metabolism of therapeutic drugs affecting their potency. However, the current knowledge on human gut bacterial metabolism is limited and lacks an understanding of the underlying mechanisms of observed drug biotransformations. Despite the complexity of the gut microbial community, genomic and metagenomic sequencing provides insights into the diversity of chemical reactions that can be carried out by the microbiota and poses new challenges to functionally annotate thousands of bacterial enzymes. Here, we outline methods to systematically address the structural and functional space of the human microbiome, highlighting a combination of in silico and in vitro approaches. Systematic knowledge about microbial enzymes could eventually be applied for personalized therapy, the development of prodrugs and modulators of unwanted bacterial activity, and the further discovery of new antibiotics.  相似文献   

5.
《Journal of molecular biology》2014,426(23):3866-3876
The human gut is home to trillions of microbes that form a symbiotic relationship with the human host. During health, the intestinal microbiota provides many benefits to the host and is generally resistant to colonization by new species; however, disruption of this complex community can lead to pathogen invasion, inflammation, and disease. Restoration and maintenance of a healthy gut microbiota composition requires effective therapies to reduce and prevent colonization of harmful bacteria (pathogens) while simultaneously promoting growth of beneficial bacteria (probiotics). Here we review the mechanisms by which the host modulates the gut community composition during health and disease, and we discuss prospects for antibiotic and probiotic therapy for restoration of a healthy intestinal community following disruption.  相似文献   

6.
There is growing recognition that the gut microbial community regulates a wide variety of important functions in its animal hosts, including host health. However, the complex interactions between gut microbes and environment are still unclear. Honey bees are ecologically and economically important pollinators that host a core gut microbial community that is thought to be constant across populations. Here, we examined whether the composition of the gut microbial community of honey bees is affected by the environmental landscape the bees are exposed to. We placed honey bee colonies reared under identical conditions in two main landscape types for 6 weeks: either oilseed rape farmland or agricultural farmland distant to fields of flowering oilseed rape. The gut bacterial communities of adult bees from the colonies were then characterized and compared based on amplicon sequencing of the 16S rRNA gene. While previous studies have delineated a characteristic core set of bacteria inhabiting the honey bee gut, our results suggest that the broad environment that bees are exposed to has some influence on the relative abundance of some members of that microbial community. This includes known dominant taxa thought to have functions in nutrition and health. Our results provide evidence for an influence of landscape exposure on honey bee microbial community and highlight the potential effect of exposure to different environmental parameters, such as forage type and neonicotinoid pesticides, on key honey bee gut bacteria. This work emphasizes the complexity of the relationship between the host, its gut bacteria, and the environment and identifies target microbial taxa for functional analyses.  相似文献   

7.
Exploring the mechanisms of maintaining microbial community structure is important to understand biofilm development or microbiota dysbiosis. In this paper, we propose a functional gene-based composition prediction(FCP) model to predict the population structure composition within a microbial community. The model predicts the community composition well in both a low-complexity community as acid mine drainage(AMD) microbiota, and a complex community as human gut microbiota. Furthermore, we define community structure shaping(CSS) genes as functional genes crucial for shaping the microbial community. We have identified CSS genes in AMD and human gut microbiota samples with FCP model and find that CSS genes change with the conditions. Compared to essential genes for microbes, CSS genes are significantly enriched in the genes involved in mobile genetic elements, cell motility, and defense mechanisms, indicating that the functions of CSS genes are focused on communication and strategies in response to the environment factors. We further find that it is the minority, rather than the majority, which contributes to maintaining community structure. Compared to health control samples, we find that some functional genes associated with metabolism of amino acids, nucleotides, and lipopolysaccharide are more likely to be CSS genes in the disease group. CSS genes may help us to understand critical cellular processes and be useful in seeking addable gene circuitries to maintain artificial self-sustainable communities. Our study suggests that functional genes are important to the assembly of microbial communities.  相似文献   

8.
The dynamics of all ecosystems are dictated by intrinsic, density‐dependent mechanisms and by density‐independent environmental forcing. In spite of the importance of the gastrointestinal microbiota in health and disease, the ecology of this system remains largely unknown. Here, we take an ecological approach to gut microbial community analysis, with statistical modelling of time series data from chemostats. This approach removes effects of host forcing, allowing us to describe a network of intrinsic interactions determining the dynamic structure of an experimental gut microbiota. Surprisingly, the main colonization pattern in this simplified model system resembled that of the human infant gut, suggesting a potentially important role of density‐dependent interactions in the early gut microbiota. Knowledge of ecological structures in microbial systems may provide us with a means of controlling such systems by modifying the strength and nature of interactions among microbes and between the microbes and their environment.  相似文献   

9.
Dogs and cats have gained a special position in human society by becoming our principal companion animals. In this context, efforts to ensure their health and welfare have increased exponentially, with in recent times a growing interest in assessing the impact of the gut microbiota on canine and feline health. Recent technological advances have generated new tools to not only examine the intestinal microbial composition of dogs and cats, but also to scrutinize the genetic repertoire and associated metabolic functions of this microbial community. The application of high-throughput sequencing techniques to canine and feline faecal samples revealed similarities in their bacterial composition, with Fusobacteria, Firmicutes and Bacteroidetes as the most prevalent and abundant phyla, followed by Proteobacteria and Actinobacteria. Although key bacterial members were consistently present in their gut microbiota, the taxonomic composition and the metabolic repertoire of the intestinal microbial population may be influenced by several factors, including diet, age and anthropogenic aspects, as well as intestinal dysbiosis. The current review aims to provide a comprehensive overview of the multitude of factors which play a role in the modulation of the canine and feline gut microbiota and that of their human owners with whom they share the same environment.  相似文献   

10.
Some compounds originating from the human gut microbial metabolism of exogenous and endogenous substrates may have properties that profoundly affect the host's physiological processes. The influence of these metabolites on differences in disease risk among individuals could be mediated by metabolism specific to the gut microbial community composition. In this study, we evaluated the effectiveness of terminal restriction fragment polymorphism (TRFLP) as a biomarker of the fecal microbial community (as a surrogate of gut microbiota) for application in human population-based studies. We tested the effects of experimental conditions on DNA quality, DNA quantity, and TRFLP patterns derived from gut bacterial communities. Genomic DNA was extracted from fecal slurries and the bacterial 16S rDNA genes were amplified and analyzed by TRFLP. We found that the composition of the TRFLP fingerprints varied by different extraction procedure. The best quality and quantity of community DNA extracted from fecal material was obtained by using the QIAamp DNA stool minikit (Qiagen, Valencia, CA) with 95 degrees C incubation and moderate bead beating treatment during the cell-lysis step. Homogenization of fecal samples reduced variation among replicates. Once the TRFLP procedure was optimized, we assessed the methodological and inter-individual variation in gut microbial community fingerprints. The methodological variation ranged from 4.5-8.1% and inter-individual variation was 50.3% for common peaks. In conclusion, standardized TRFLP is a robust, reproducible, and high-throughput method that will provide a useful biomarker for characterizing gut microbiota in human fecal samples.  相似文献   

11.
Microbial ecosystem comprises a complex community in which bacteria interact with each other.The potential roles of the intestinal microbiome play in human health have gained considerable attention.The imbalance of gut microbial community has been looked to multiple chronic diseases.Cardiovascular diseases(CVDs)are leading causes of morbidity worldwide and are influ-enced by genetic and environmental factors.Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome.in this review,we highlight the complex interplay between microbes,their metabolites,and the potential influence on the generation and development of CVDs.The therapeutic potentiai of using intestinal microbiomes to treat CVD is also discussed.it is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.  相似文献   

12.
13.
While the microbiota resident in the human gut is now known to provide a range of functions relevant to host health, many of the microbial members of the community have not yet been cultured or are represented by a limited number of isolates. We describe here the draft genome sequence of Turicibacter sanguinis PC909, isolated from a pooled healthy human fecal sample as part of the Australian Human Gut Microbiome Project.  相似文献   

14.
Our intestine is host to a large microbial community (microbiota) that educates the immune system and confers niche protection. Profiling of the gut‐associated microbial community reveals a dominance of obligate anaerobic bacteria in healthy individuals. However, intestinal inflammation is associated with a disturbance of the microbiota—known as dysbiosis—that often includes an increased prevalence of facultative anaerobic bacteria. This group contains potentially harmful bacterial species, the bloom of which can further exacerbate inflammation. Here, we review the mechanisms that generate changes in the microbial community structure during inflammation. One emerging concept is that electron acceptors generated as by‐products of the host inflammatory response feed facultative anaerobic bacteria selectively, thereby increasing their prevalence within the community. This new paradigm has broad implications for understanding dysbiosis during gut inflammation and identifies potential targets for intervention strategies.  相似文献   

15.
The human gut microbiota comprise a complex and dynamic ecosystem that profoundly affects host development and physiology. Standard approaches for analyzing time-series data of the microbiota involve computation of measures of ecological community diversity at each time-point, or measures of dissimilarity between pairs of time-points. Although these approaches, which treat data as static snapshots of microbial communities, can identify shifts in overall community structure, they fail to capture the dynamic properties of individual members of the microbiota and their contributions to the underlying time-varying behavior of host ecosystems. To address the limitations of current methods, we present a computational framework that uses continuous-time dynamical models coupled with Bayesian dimensionality adaptation methods to identify time-dependent signatures of individual microbial taxa within a host as well as across multiple hosts. We apply our framework to a publicly available dataset of 16S rRNA gene sequences from stool samples collected over ten months from multiple human subjects, each of whom received repeated courses of oral antibiotics. Using new diversity measures enabled by our framework, we discover groups of both phylogenetically close and distant bacterial taxa that exhibit consensus responses to antibiotic exposure across multiple human subjects. These consensus responses reveal a timeline for equilibration of sub-communities of micro-organisms with distinct physiologies, yielding insights into the successive changes that occur in microbial populations in the human gut after antibiotic treatments. Additionally, our framework leverages microbial signatures shared among human subjects to automatically design optimal experiments to interrogate dynamic properties of the microbiota in new studies. Overall, our approach provides a powerful, general-purpose framework for understanding the dynamic behaviors of complex microbial ecosystems, which we believe will prove instrumental for future studies in this field.  相似文献   

16.
With the aid of next-generation sequencing technology, researchers can now obtain millions of microbial signature sequences for diverse applications ranging from human epidemiological studies to global ocean surveys. The development of advanced computational strategies to maximally extract pertinent information from massive nucleotide data has become a major focus of the bioinformatics community. Here, we describe a novel analytical strategy including discriminant and topology analyses that enables researchers to deeply investigate the hidden world of microbial communities, far beyond basic microbial diversity estimation. We demonstrate the utility of our approach through a computational study performed on a previously published massive human gut 16S rRNA data set. The application of discriminant and topology analyses enabled us to derive quantitative disease-associated microbial signatures and describe microbial community structure in far more detail than previously achievable. Our approach provides rigorous statistical tools for sequence-based studies aimed at elucidating associations between known or unknown organisms and a variety of physiological or environmental conditions.  相似文献   

17.
人体肠道作为一种营养丰富的天然环境有多达100兆个微生物,其中绝大多数存于结肠内,密度接近1011~1012/m L。人类肠道内的微生物多样性是微生物菌落和宿主共同进化的结果,自然选择和进化使肠道菌群与宿主处于一种动态平衡且稳定的关系。文章综述了肠道菌群对宿主可能产生的影响以及引起肠道菌群发生改变的某些因素,肠道微生物影响宿主的代谢、营养吸收、免疫功能以及神经功能调节,而饮食及其他条件又能引起肠道菌群的改变。深入分析肠道菌群的具体结构、探索不同微生物在宿主体内究竟发挥着怎样的作用以及如何充分利用微生物的不同特性改善人类健康应成为今后研究的重点方向。  相似文献   

18.
Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.  相似文献   

19.
Xiao  Mingming  Yang  Junjun  Feng  Yuxin  Zhu  Yan  Chai  Xin  Wang  Yuefei 《Applied microbiology and biotechnology》2017,101(8):3077-3088

The human intestine hosts various complex microbial communities that are closely associated with multiple health and disease processes. Determining the composition and function of these microbial communities is critical to unveil disease mechanisms and promote human health. Recently, meta-omic strategies have been developed that use high-throughput techniques to provide a wealth of information, thus accelerating the study of gut microbes. Metaproteomics is a newly emerged analytical approach that aims to identify proteins on a large scale in complex environmental microbial communities (e.g., the gut microbiota). This review introduces the recent analytical strategies and applications of metaproteomics, with a focus on advances in gut microbiota research, including a discussion of the limitations and challenges of these approaches.

  相似文献   

20.
The use of lactobacilli as probiotics in swine has been gaining attention due to their ability to improve growth performance and carcass quality, prevent gastrointestinal infection and most importantly, their ‘generally recognized as safe’ status. Previous studies support the potential of lactobacilli to regulate host immune systems, enhance gut metabolic capacities and maintain balance in the gut microbiota. Research on swine gut microbiota has revealed complex gut microbial community structure and showed the importance of Lactobacillus to the host's health. However, the species‐ and strain‐specific characteristics of lactobacilli that confer probiotic benefits are still not well understood. The diversity of probiotic traits in a complex gut ecosystem makes it challenging to infer the relationships between specific functions of Lactobacillus sp. and host health. In this review, we provide an overview of how lactobacilli play a pivotal role in the swine gut ecosystem and identify key characteristics that influence gut microbial community structure and the health of pigs. In addition, based on recent and ongoing meta‐omics and omics research on the gut microbiota of pigs, we suggest a workflow combining culture‐dependent and culture‐independent approaches for more effective selection of probiotic lactobacilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号