首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture of dimers of nicotinamide adenine dinucleotide, largely 4,4?-linked, obtained by electrochemical reduction of NAD+, can be photooxidized back to NAD+ in the presence of oxygen. Oxygen is consumed during the photooxidation process with the production of hydrogen peroxide. The oxidation is almost pH independent and is stimulated by light whose wavelength exceeds 300 nm. Lactate dehydrogenase and alcohol dehydrogenase added to the solutions under irradiation increased the oxygen uptake by the NAD dimers in a concentration-dependent way. These observations suggest that light induces the homolytic cleavage of NAD dimers to NAD radicals which in turn are oxidized to NAD+ by oxygen.  相似文献   

2.
Summary The angelicin-thymine photoadduct formed by irradiation (365 nm) of an aqueous solution of angelicin and tritiated thymine was isolated by preparative paper chromatography. Reirradiation of this photoadduct at wavelengths shorter than 334 nm splits the adduct, forming again the two parent compounds. A DNA-angelicin combination (8.30 g angelicin per mg of DNA) was prepared by irradiating (365 nm) an aqueous solution of DNA with3H-angelicin. Reirradiation of this combination at wavelengths shorter than 312 nm releases3H-angelicin.The above mentioned conditions were employed to reactivate the photodamaged bacterial cells by angelicin. No reactivation was observed at shorter wavelengths; on the contrary, the lethality was higher after reirradiation. We conclude therefore, that the damage produced directly by the shorter wavelength radiations (formation of pyrimidine dimers) is greater than the small repair produced under our experimental conditions.Reirradiation of bacterial cells with visible light is a condition which activates the photoreactivating enzymes, which are able to provoke the cleavage of pyrimidine dimers. The inability to repair the photodamage caused by furocoumarins under these conditions suggests that this enzyme is highly specific for pyrimidine dimers. Though in both cases,i.e. pyrimidine-pyrimidine and pyrimidine-furocoumarine dimers a cyclo-butane ring is involved, the latter is not recognized by the photoreactivating enzyme.  相似文献   

3.
The purpose of this study was to compare fluence-response relationships for the production of cyclobutane pyrimidine dimers in epidermal or dermal DNA of platyfishXiphophorus hybrids irradiated with UVB, and to determine photoreactivation from black light on dimers producedin situ. This was accomplished by quantitative gel electrophoresis of unlabeled DNA following extraction of the DNA and treatment with an enzyme specific for the detection of pyrimidine dimers. The dermis was the target tissue for UV-induced DNA damage inXiphophorus hybrid fish skin. Shapes of dimer-fluence response data following filtered sunlamp irradiation ( > 290 nm) or monochromatic wavelength 302 nm in the epidermis or dermis were different. In the epidermis there was an initial steep upward slope followed by a plateau, whereas in the dermis a linear relationship was observed. The final values of dimers at the high doses were, however, nearly equal in the epidermis and dermis exposed to either radiation. These differences in fluence-response relationships are probably attributable to the intertwining of the epidermis and to the shielding effect of the epidermal layer, with scales leading to a heterogenous population of cells which are exposed to different UV doses. Photoreversal of dimers was readily observed by black light irradiation in both epidermis and dermis irradiated with either > 290 nm or 302 nm.This research was supported by the Office of Health and Environmental Research of the U.S. Department of EnergyThe author is recipient of the National Academy of Sciences' Kobelt Fund Grant  相似文献   

4.
The structure and function of photosystem II (PSII) are highly susceptible to photo‐oxidative damage induced by high‐fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high‐irradiance light, and hence it is named ‘Maintenance of PSII under High light 1’ (MPH1). The MPH1 protein co‐purifies with PSII core complexes and co‐immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high‐light stress in land plants.  相似文献   

5.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

6.
Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a `β-can' structure, like GFP, with 11 β-strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Qx bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions. Accepted: 29 May 2000  相似文献   

7.
Mutations to streptomycin resistance induced by ultraviolet light in Escherichia coli can lose their susceptibility to photoreversing light during excision repair and in the absence of chromosomal replication and protein synthesis, i.e., under conditions where SOS induction cannot occur. Using fusions of lac with sulA and umuC we have shown that after excision of UV damage in the presence of chloramphenicol there is a persisting, relatively stable signal capable of inducing SOS genes when protein sysnthesis is subsequently permitted. The persisting signal is formed roughly in proportion to the square of the UV dose and is about 30% photoreversible. It is suggested that the persisting SOS-inducing signal comprises a UV photoproduct (the target lesion) opposite a gap in the opposing DNA strand, and is formed by excision of one (the ancillary lesion) of a pair of closely opposed photoproducts. Calculations suggest that as few as two or three such configurations in a cell can lead to induction a sulA when protein synthesis is permitted. It is not clear whether these configurations can directly induce the SOS system because of their region of single-stranded DNA or whether the ultimate SOS-inducing signal is a more extensive single-stranded region formed when such configurations encounter a replication fork. Photoproduct/gap configurations have been previously suggested to be potentially mutagenic. UV-induced mutations to streptomycin resistance are mostly at A:T sites and are not photoreversible in fully SOS-induced bacteria in the absence of excision repair, indicating that they are not targeted at cyclobutane-type pyrimidine dimers. In SOS-induced excision-proficient bacteria there is about 39% photoreversibility which is rapidly lost after UV. This photoreversibility is attributed to many ancillary lesions being cyclobutane-type pyrimidine dimers which are excised leading to the exposure of target lesions on the opposing strand which, at these particular sites, are mostly non-photoreversible photoproducts.  相似文献   

8.
Summary Fibroblasts from Xenopus laevis, which possess photoreactivating enzyme were used to study the influence of photoreactivating light on the frequency of pyrimidine dimers in DNA, chromosomal aberrations, sister chromatid exchanges, cell killing and the induction of gene mutations (ouabain-resistance) induced by 254 nm ultraviolet irradiation. The frequency of all biological endpoints studied were reduced following exposure to photoreactivating light parallel to the reduction in the frequencies of pyrimidine dimers (determined as endonuclease sensitive sites). However there was not always an absolute quantitative relationship between the reduction in the frequency of pyrimidine dimers and the reduction in the biological effects. This probably reflects a fast fixation process for the biological effects prior to removal of the dimers by photoreactivation.Abbreviations UV ultraviolet - PR photoreactivating - ESS endonuclease sensitive site - SCE sister chromatid exchanges - BrdUrd 5-brothodeoxyuridine  相似文献   

9.
Summary Expression of the lacZ gene in Escherichia coli is inactivated by exposure to ultraviolet light (UV). Inactivation is exceptionally effective when cells contain amplified levels of DNA photolyase (which forms complexes with pyrimidine dimers in the absence of light for actual photoreversal) and a prophage. Without amplified photolyase, the prophage or both, inactivation rates are similar and much lower. UV-inactivation of lacZ gene expression in the presence of both amplified photolyase and is even more effective if cI857 is used in place of the wildtype prophage but is wholly unexceptional if the prophage carries defects in the genes rexA or rexB. When Rex AB proteins are provided by expression from a plasmid and the cell also contains amplified photolyase, exceptional inactivation rates again obtain; in fact inactivation is most effective under these conditions. The data are considered to reveal a role for Rex AB proteins, which mediate superinfection exclusion, in the exceptional inactivation of gene expression by photolyase bound to pyrimidine dimers in DNA. Photolyase-dimer complexes may mimic the structure of certain complexes that arise during phage development and thus influence Rex A and/or B proteins, thereby shutting down cell metabolism.  相似文献   

10.
The identity of the mitochondrial permeability transition (mPT) pore, a megachannel embedded in the inner membrane opened by Ca2+, is fiercely debated. Unraveling the components structuring this pore is critical for combating diseases as diverse as neurodegeneration, cancer, autoimmunity, and myopathies in which this phenomenon is implicated. Current consensus is that the pore is formed within, or in‐between F0F1 ATP synthase dimers, but not through their c‐subunit ring. Two recent studies in this issue of EMBO Reports throw more light on these aspects, one by Giorgio et al 1 showing that the β subunit of the ATP synthase harbors a Ca2+‐binding site responsible for triggering mPT, and the other by Bonora et al 2 demonstrating that permeability transition requires dissociation of F0F1 ATP synthase dimers, albeit in a manner involving the c‐subunit ring.  相似文献   

11.
An engineering tool for controlling flux distribution on metabolic pathways to an appropriate state is highly desirable in bioproduction. An optogenetic switch, which regulates gene expression by light illumination is an attractive on/off switchable system, and is a promising way for flux control with an external stimulus. We demonstrated a light-inducible flux control between glycolysis and the methylglyoxal (MGO) pathway in Escherichia coli using a CcaS/CcaR system. CcaR is phosphorylated by green light and is dephosphorylated by red light. Phosphorylated CcaR induces gene expression under the cpcG2 promoter. The tpiA gene was expressed under the cpcG2 promoter in a genomic tpiA deletion strain. The strain was then cultured with glucose minimum medium under green or red light. We found that tpiA messenger RNA level under green light was four times higher than that under red light. The repression of tpiA expression led to a decrease in glycolytic flux, resulting in slower growth under red light (0.25 hr −1) when compared to green light (0.37 hr −1). The maximum extracellular MGO concentration under red light (0.2 mM) was higher than that under green light (0.05 mM). These phenotypes confirm that the MGO pathway flux was enhanced under red light.  相似文献   

12.
13.
Summary Mutagenesis by ultraviolet light was studied in a strain of E. coli ung, which lacks uracil-DNA glycosylase activity. Mutation potentiated by UV in cells already induced by nalidixic acid treatment was still photoreversible suggesting that pyrimidine dimers act directly as premutational photoproducts. Secondly, irradiated cells were held in buffer at 48°C for 0 to 135 min to allow for deamination of cytosines in pyrimidine dimers. The mutation frequencies for class 2 de novo suppressor mutation, for class 2 converted suppressor mutation and for backmutation were individually determined, before and after photoreactivation, as a function of this thermal treatment. Backmutation remained sensitive to photoreactivation throughout the treatment but de novo and converted suppressor mutations rapidly developed resistance to photoreactivation. This resistance was not seen in an ung + control. A model is proposed to account for the selective resistance based on the hypothesis that class 2 de novo and converted suppressor mutations normally result from UV by GC to AT transitions at T=C dimers. The model describes deamination of the cytosine residues in these dimers to become uracil residues. In consequence, monomerization by photoreactivation in cells that can not repair uracils in DNA no longer reverses mutation and GC to AT transitions are established at the sites of uracils.  相似文献   

14.
15.
Summary The centromere is the region within a chromosome that is required for proper segregation during mitosis and meiosis. Lesions in this sequence represent a unique type of damage, as loss of function could result in catastrophic loss of the genetic material of an entire chromosome. We have measured the induction by ultraviolet (UV) light of pyrimidine dimers in a 2550-bp restriction fragment that includes the centromere region of chromosome III in Saccharomyces cerevisiae. Yeast cells were exposed to ultraviolet light, cellular DNA was gently extracted, and subsequently treated with a UV-specific endonuclease to cleave all pyrimidine dimers. The sites of UV-specific nuclease scission within the centromere were determined by separating the DNA according to molecular weight, transferring the fragments to nitrocellulose, and hybridizing to a radiolabeled 624-bp fragment homologous to the centromere DNA from chromosome III. Several hotspots were identified in chromatin DNA from cells, as well as in irradiated deproteinized DNA. Double strand damage due to closely opposed pyrimidine dimers was also observed. At biological doses (35% survival) there are approximately 0.1 to 0.2 pyrimidine dimers per centromere. These dimers are efficiently repaired in the centromere and surrounding region.  相似文献   

16.

Background  

DnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920), AtJ11 (At4 g36040) and AtJ20 (At4 g13830), was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS) II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed.  相似文献   

17.
Growth experiments on the marine bacterium Vibrio angustum S14 were conducted under four light conditions using a solar simulator: visible light (V), V + ultraviolet A (UV-A), V + UV-A + UV-B radiation, and dark. Growth was inhibited mainly by UV-B and slightly by UV-A. UV-B radiation induced filaments containing multiple genome copies with low cyclobutane pyrimidine dimers. These cells did not show modifications in cellular fatty acid composition in comparison with dark control cultures and decreased in size by division after subsequent incubation in the dark. A large portion of the bacterial population grown under visible light showed an alteration in cellular DNA fluorescence as measured by flow cytometry after SYBR-Green I staining. This alteration was not aggravated by UV-A and was certainly due to a change in DNA topology rather than DNA deterioration because all the cells remained viable and their growth was not impaired. Ecological consequences of these observations are discussed.  相似文献   

18.
Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely, cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6 kJ m−2 d−1 significantly reduced fungal growth rates (by between 22% and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and NER, showed that the UV-B-induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr respectively), demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. We present the first study to examine the capability of the Arctic and Antarctic Pseudogymnoascus sp. to perform photoreactivation and/or NER via RT-qPCR approaches, and also clarify the effects of light on UV-B-induced DNA damage repair in vivo by quantifying cyclobutene pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts. Physiological response data, including relative growth rate, pigmentation and conidia production in these Pseudogymnoascus isolates exposed to UV-B radiation are also presented.  相似文献   

19.
Summary Bacteria of strain TK610 uvrA-6 his-4 umuC-36, when allowed to replicate their DNA for some hours after irradiation show induction of His+ mutations when subsequently exposed to visible light. It is suggested that base pair errors can be made opposite sites of pyrimidine dimers without involvement of umuC gene product but that the latter is required for continued replication past the dimermismatch region. Removal of the pyrimidine dimer by photoreversal allows replication to continue thus fixing the mismatched base as as mutation.  相似文献   

20.
Summary Genetic recombination induced by structural damage in DNA molecules was investigated in E. coli K12 () lysogens infected with genetically marked phage . Photoproducts were induced in the phage DNA before infection by exposing them either to 313 nm light in the presence of acetophenone or to 254 nm light. To test the role of the replication of the damaged phage DNA on the frequency of the induced recombination, both heteroimmune and homoimmune crosses were performed.First, samples of a heteroimmune phage imm434 P80 exposed to these treatments were allowed to infect cells lysogenic for prophage cI857 P3. Phage DNA replication and maturation took place, and the resulting progeny phages were assayed for the frequency of P + recombinants. Recombination was less frequent in infected cells exposed to visible light and in wild type cells able to perform excision repair than in excision-defective lysogens. Therefore, much of the induced recombination can be atributed to the pyrimidine dimers in the phage DNA, the only photoproducts known to be dissociated by photoreactivating enzyme.Second, in homoimmune crosses, samples of similarly treated homoimmune P3 phages were allowed to infect lysogens carrying cI857 P80. Replication of the phage DNA containing ultraviolet photoproducts was repressed by immunity, and was futher blocked by the lack of the P gene product needed for replication. The lysogens were purified and scored for both colony forming ability and for P + recombinant prophages. The 254 nm photoproducts increased the frequency of recombination in these homimmune crosses, even though phage DNA replication was blocked. Irradiation with 313 nm light and acetophenone M, which produces dimers and unknown photoproducts, was not as effective per dimer as the 254 nm light.It is concluded from these results that certain unidentified 254 nm photoproducts can cause recombination even in the absence of DNA replication. They are not pyrimidine dimers, as they are not susceptible to excision repair or photoreactivation. In contrast, pyrimidine dimers appear to cause recombination only when the DNA containing them undergoes replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号