首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased glucocorticoid action and adipose tissue inflammation contribute to excess adiposity. These adaptations may be enhanced in offspring exposed to nutrient restriction (NR) in utero, thereby increasing their susceptibility to later obesity. We therefore determined the developmental ontogeny of glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase (11betaHSD) types 1 and 2, and uncoupling protein (UCP)-2 mRNA in perirenal adipose tissue between late gestation and 6 mo after birth in the sheep, as well as the effect of maternal NR targeted between early to mid (28-80 days, term approximately 147 days)- or late (110-147 days) gestation. GR and 11betaHSD1 mRNA increased with fat mass and were all maximal within the 6-mo observation period. 11betaHSD2 mRNA abundance demonstrated a converse decline, whereas UCP2 peaked at 30 days. GR and 11betaHSD1 mRNA abundance were strongly correlated with total and relative perirenal adipose tissue weight, and UCP2 was strongly correlated with GR and 11betaHSD1 mRNA. Early- to midgestational NR increased GR, 11betaHSD1, and UCP2 mRNA, but decreased 11betaHSD2 mRNA abundance, an adaptation reversed with late-gestational NR. We conclude that the continual rise in glucocorticoid action and fat mass after birth may underlie the development of later obesity. The magnitude of this adaptation is partly dependent on maternal food intake through pregnancy.  相似文献   

2.
Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P < 0.0001), mean gestational arterial Po(2) (P < 0.0001), plasma glucose (P < 0.01), and insulin concentrations (P < 0.02), than controls. The expression of IGF1 mRNA in PAT was lower in the PR fetuses (PR, 0.332 +/- 0.063; control, 0.741 +/- 0.083; P < 0.01). Leptin mRNA expression in PAT was also lower in PR fetuses (PR, 0.077 +/- 0.009; control, 0.115 +/- 0.013; P < 0.05), although there was no difference in the expression of other adipokine or adipogenic genes in PAT between PR and control fetuses. Thus, restriction of placental and hence, fetal substrate supply results in decreased IGF1 and leptin expression in fetal visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity.  相似文献   

3.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

4.
In adults, circulating leptin concentrations are dependent on body fat content and on current nutritional status. However, the relationships among maternal nutrient intake, fetal adiposity, and circulating leptin concentrations before birth are unknown. We investigated the effects of an increase in nutrient intake in the pregnant ewe on fetal adiposity and plasma leptin concentrations during late gestation. Between 115 and 139-141 days gestation (term = 147 +/- 3 days gestation), ewes were fed a diet calculated to provide either maintenance (control, n = 6) or approximately 155% of maintenance requirements (well-fed, n = 8). The fetal fat depots (perirenal and interscapular) were dissected, and the relative proportion of unilocular and multilocular adipocytes in each depot was determined. Maternal plasma glucose and leptin concentrations were significantly increased in well-fed ewes. Fetal plasma glucose concentrations were also higher in the well-fed group (115-139 days gestation: control, 1.65 +/- 0.14 mmol/L; well-fed, 2.00 +/- 0.14 mmol/L; F = 5.76, P < 0.04). There was no effect of increasing maternal feed intake on total fat mass, the relative mass of unilocular fat, or fetal plasma leptin concentrations (115-139 days gestation: control, 5.2 +/- 0.8 ng/ml; well-fed, 4.7 +/- 0.7 ng/ml). However, in both the control and well-fed groups fetal plasma leptin concentrations (y) were positively correlated with the relative mass of unilocular fat (x): y = 1.51x + 1.70; (R = 0.76, P < 0.01). Thus, fetal leptin may play a role as a signal of unilocular fat mass in the fetus when maternal nutrient intake is at or above maintenance requirements.  相似文献   

5.
Umbilical cord compression (UCC) sufficient to reduce umbilical blood flow by 30% for 3 days, results in increased fetal plasma cortisol and catecholamines that are likely to promote maturation of the fetal lung and brown adipose tissue (BAT). We determined the effect of UCC on the abundance of uncoupling protein (UCP)1 (BAT only) and -2, glucocorticoid receptor (GR), and 11beta-hydroxysteroid dehydrogenase (11beta-HSD)1 and -2 mRNA, and mitochondrial protein voltage-dependent anion channel (VDAC) and cytochrome c in these tissues. At 118 +/- 2 days of gestation (dGA; term approximately 145 days), 14 fetuses were chronically instrumented. Eight fetuses were then subjected to 3 days of UCC from 125 dGA, and the remaining fetuses were sham operated. All fetuses were then exposed to two 1-h episodes of hypoxemia at 130 +/- 1 and 134 +/- 1 dGA before tissue sampling at 137 +/- 2 dGA. In both tissues, UCC upregulated UCP2 and GR mRNA, plus VDAC and cytochrome c mitochondrial proteins. In lung, UCC increased 11beta-HSD1 mRNA but decreased 11beta-HSD2 mRNA abundance, a pattern reversed for BAT. UCC increased UCP1 mRNA and its translated protein in BAT. UCP2, GR, 11beta-HSD1 and -2 mRNA, plus VDAC and cytochrome c protein abundance were all significantly correlated with fetal plasma cortisol and catecholamine levels, but not thyroid hormone concentrations, in the lung and BAT of UCC fetuses. In conclusion, chronic UCC results in precocious maturation of the fetal lung and BAT mitochondria, an adaptation largely mediated by the surge in fetal plasma cortisol and catecholamines that accompanies UCC.  相似文献   

6.
Small size at birth has been associated with an increased risk of central obesity and reduced lean body mass in adult life. This study investigated the time of onset of prenatally induced obesity, which occurs after maternal feed restriction, in the guinea pig, a species that, like the human, develops substantial adipose tissue stores before birth. We examined the effect of maternal feed restriction [70% ad libitum intake from 4 wk before to midpregnancy, then 90% until day 60 gestation (term approximately 69 days)] on fetal growth and body composition in the guinea pig. Maternal feed restriction reduced fetal (-39%) and placental (-30%) weight at 60 days gestation and reduced liver, biceps muscle, spleen, and thymus weights, relative to fetal weight, while relative weights of brain, lungs, and interscapular and retroperitoneal fat pads were increased. In the interscapular depot, maternal feed restriction decreased the volume density of multilocular fat and increased that of unilocular fat, resulting in an increased relative weight of interscapular unilocular fat. Maternal feed restriction did not alter the relative weight of perirenal fat or the volume density of adipocyte populations within the depot but increased unilocular lipid locule size. Maternal feed restriction in the guinea pig is associated with decreased weight of major organs, including liver and skeletal muscle, but increased adiposity of the fetus, with relative sparing of unilocular adipose tissue. If this early-onset obesity persists, it may contribute to the metabolic and cardiovascular dysfunction that these offspring of feed-restricted mothers develop as adults.  相似文献   

7.
8.
It has been proposed that maternal nutrient restriction may alter the functional development of the adipocyte and the synthesis and secretion of the adipocyte-derived hormone, leptin, before birth. We have investigated the effects of restricted periconceptional undernutrition and/or restricted gestational nutrition on fetal plasma leptin concentrations and fetal adiposity in late gestation. There was no effect of either restricted periconceptional or gestational nutrition on maternal or fetal plasma leptin concentrations in singleton or twin pregnancies during late gestation. In ewes carrying twins, but not singletons, maternal plasma leptin concentrations in late gestation were directly related to the change in ewe weight that occurred during the 60 days before mating [maternal leptin = 0.9 (change in ewe weight) + 7.8; r = 0.6, P < 0.05]. In twin, but not singleton, pregnancies, there was also a significant relationship between maternal and fetal leptin concentrations (maternal leptin = 0.5 fetal leptin + 4.2, r = 0.63, P < 0.005). The relative mass of perirenal fat was also significantly increased in twin fetal sheep in the control-restricted group (6.0 +/- 0.5) compared with the other nutritional groups (control-control: 4.1 +/- 0.4; restricted-restricted: 4.4 +/- 0.4; restricted-control: 4.3 +/- 0.3). In conclusion, the impact of maternal undernutrition on maternal plasma leptin concentrations during late gestation is dependent on fetal number. Furthermore, we have found that there is an increased fetal adiposity in the twins of ewes that experienced restricted nutrition throughout gestation, and this may be important in the programming of postnatal adiposity.  相似文献   

9.
10.
In the lamb, the uncoupling protein-1 (UCP1) content of perirenal adipose tissue at birth is an important factor in heat production by non-shivering thermogenesis and the prevention of hypothermia. This study examines UCP1 gene expression and protein content in perirenal adipose tissue over the first 15 days of life by in situ hybridisation and immunohistochemistry. UCP1 mRNA was detected at birth in 30% of adipocytes, and in approximately 24% of fat cells at 2 days of life. However, by 5 days of age and thereafter UCP1 mRNA was undetectable. Immunoreactive UCP1 was present in all adipocytes at birth and at 2 days of age, and remained detectable in a decreasing proportion of cells until day 10 of life. By 15 days of age no immunoreactive UCP1 was detected and the perirenal adipose tissue had the appearance of white fat. It is concluded that UCP1 gene expression is suppressed in most adipocytes in perirenal adipose tissue of newborn lambs, and gene expression rapidly falls in the remaining adipocytes over the first 5 days of postnatal life. In contrast, immunoreactive UCP1, a characteristic of brown adipose tissue, was present in many adipocytes for up to 10 days of age, suggesting that UCP1 has a long half-life in lambs. All adipocytes in perirenal adipose tissue of newborn lambs appear to be functionally brown, but over the first 2 weeks of postnatal life there is a complete transformation to white adipocytes.  相似文献   

11.
We have performed a sequential study on the abundance of the mRNA for uncoupling protein (UCP), subunit II of cytochrome-c oxidase (COII) and lipoprotein lipase in brown adipose tissue during the fetal and postnatal periods. Moreover, we have determined whether these parameters can be modulated by ambient temperature in the early hours after birth, and at which point in development this sensitivity first appears. UCP gene expression in the fetal and neonatal period has particular features when compared with overall mitochondriogenesis (COII mRNA expression) or with the expression of lipoprotein lipase mRNA. There is a specific induction of UCP gene expression between days 18 and 19 of pregnancy followed by a specific increase of UCP gene expression in utero and a further increase after birth. The acquisition of the physiological apparatus capable of the response to UCP and lipoprotein lipase gene expression to the environmental temperature is not achieved until the last day of fetal development. This result suggests that mechanisms of beta-adrenergic modulation of gene expression in brown fat are already established at birth. From an experiment on iopanoic acid treatment of pregnant mothers, it was concluded that iodothyronine 5'-deiodinase activity is not necessary for the expression of the mRNAs for UCP, COII and lipoprotein lipase in the fetus whereas it is necessary for the acquisition of temperature sensitivity to these parameters at birth.  相似文献   

12.
Evidence from epidemiologic, clinical, and experimental studies has shown that a suboptimal intrauterine environment during early pregnancy can alter fetal growth and gestation length and is associated with an increased prevalence of adult hypertension and cardiovascular disease. It has been postulated that maternal nutrient restriction may act to reprogram the development of the pituitary-adrenal axis, resulting in excess glucocorticoid exposure and adverse health outcomes in later life. It is unknown, however, whether maternal nutrient restriction during the periconceptional period alters the development of the fetal pituitary-adrenal axis or whether the effects of periconceptional undernutrition can be reversed by the provision of an adequate level of maternal nutrition throughout the remainder of pregnancy. We have investigated the effect of restricted periconceptional nutrition (70% of control feed allowance) from 60 days before until 7 days after mating and the effect of restricted gestational nutrition from Day 8 to 147 of gestation on the development of the fetal hypothalamo-pituitary adrenal (HPA) axis in the sheep. In these studies, we have also investigated the effects of fetal number and sex on the pituitary-adrenal responses to periconceptional and gestational undernutrition. In ewes maintained on a control diet throughout the periconceptional and gestational periods, fetal plasma ACTH concentrations were higher and the prepartum surge in cortisol occurred earlier in singletons compared with twins. Plasma ACTH concentrations were also significantly higher in male compared with female singletons, and in twin fetuses, the prepartum surge in cortisol concentrations occurred earlier in males than in females. Periconceptional undernutrition resulted in higher fetal plasma concentrations of ACTH between 110 and 145 days of gestation and a significantly greater cortisol response to a bolus dose of corticotropin-releasing hormone in twin, but not singleton, fetuses in late gestation. We have therefore demonstrated that fetal number and sex each has an impact on the timing of the prepartum activation of the HPA axis in the sheep. Restriction of the level of maternal nutrition before and in the first week of a twin pregnancy results in stimulation of the fetal pituitary-adrenal axis in late gestation, and this effect is not reversed by the provision of a maintenance control diet from the second week of pregnancy.  相似文献   

13.
A major function of abdominal adipose in the newborn is nonshivering thermogenesis. Uncoupling protein (UCP) UCP1 and UCP2 play major roles in thermogenesis. The present study tested the hypothesis that long-term hypoxia (LTH) modulates expression of UCP1 and UCP2, and key genes regulating expression of these genes in the late-gestation ovine fetus. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dG); perirenal adipose tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dG. Quantitative real-time PCR was used to analyze mRNA for UCP1, UCP2, 11beta hydroxysteroid dehydrogenase type 1 (HSD11B1) and 2 (HSD11B2), glucocorticoid receptor (GR), beta3 adrenergic receptor (beta3AR), deiodinase type 1 (DIO1) and DIO2, peroxisome proliferator activated receptor (PPAR) alpha and gamma and PPARgamma coactivator 1 (PGC1alpha). Concentrations of mRNA for UCP1, HSD11B1, PPARgamma, PGC1, DIO1, and DIO2 were significantly higher in perirenal adipose of LTH compared with control fetuses, while mRNA for HSD11B2, GR, or PPARalpha in perirenal adipose did not differ between control and LTH fetuses. The increased expression of UCP1 is likely an adaptive response to LTH, assuring adequate thermogenesis in the event of birth under oxygen-limiting conditions. Because both glucocorticoids and thyroid hormone regulate UCP1 expression, the increase in HSD11B1, DIO1, and DIO2 implicate increased adipose capacity for local synthesis of these hormones. PPARgamma and its coactivator may provide an underlying mechanism via which LTH alters development of the fetal adipocyte. These findings have important implications regarding fetal/neonatal adipose tissue function in response to LTH.  相似文献   

14.
Functional development of the adrenal cortex is critical for fetal maturation and postnatal survival. In the present study, we have determined the developmental profile of expression of the mRNA and protein of an essential cholesterol-transporting protein, steroidogenic acute regulatory protein (StAR), in the adrenal of the sheep fetus. We have also investigated the effect of placental restriction (PR) on the expression of StAR mRNA and protein in the growth-restricted fetus. Adrenal glands were collected from fetal sheep at 82-91 days (n = 10), 125-133 days (n = 10), and 140-144 days (n = 9) and from PR fetuses at 141-145 days gestation (n = 9) (term = 147 +/- 3 days gestation). The adrenal StAR mRNA:18S rRNA increased (P < 0.05) between 125 days (7.44 +/- 1.61) and 141-144 days gestation (13.76 +/- 1.88). There was also a 13-fold increase (P < 0.05) in the amount of adrenal StAR protein between 133 and 144 days gestation in these fetuses. However, the amount of StAR protein (6.9 +/- 1.7 arbitrary densitometric units [AU]/microg adrenal protein) in the adrenal of the growth-restricted fetal sheep was significantly reduced, when compared with the expression of StAR protein (17.1 +/- 1.9 AU/microg adrenal protein) in adrenals from the age-matched control group. In summary, there is a developmental increase in the expression of StAR mRNA and protein in the fetal sheep adrenal during the prepartum period when adrenal growth and steroidogenesis is dependent on ACTH stimulation. We have found that, while the level of expression of StAR protein is decreased in the adrenal gland of the growth-restricted fetus during late gestation, this does not impair adrenal steroidogenesis. Our data also suggest that the stimulation of adrenal growth and steroidogenesis in the growth-restricted fetus may not be ACTH dependent.  相似文献   

15.
This study was designed to test the hypothesis that long-term hypoxia (LTH) increases fetal plasma leptin and fetal adipose or placental leptin expression and alters hypothalamic and adrenocortical leptin receptor (OB-R) expression. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 to approximately 130 days of gestation. Reduced Po2 was maintained in the laboratory by nitrogen infusion through a maternal tracheal catheter. On day 132, normoxic control and LTH fetuses underwent surgical implantation of vascular catheters (n=6 for each group). Five days after surgery, maternal and fetal arterial blood samples were collected for leptin, insulin, and glucose analysis. Placental tissue, periadrenal fat, and fetal hypothalami and adrenal glands were collected from additional control (n=7) and LTH (n=8) fetuses for analysis of leptin mRNA by quantitative, real-time, RT-PCR (qRT-PCR). There was a significant (P<0.03) elevation in fetal plasma leptin in the LTH fetuses (3.5+/-0.7 ng/ml) vs. control (1.1+/-0.1 ng/ml). There were no differences in either glucose or insulin concentrations between the two groups. Periadrenal adipose leptin mRNA was significantly higher in the LTH group compared with control, as was placental leptin expression. The levels of leptin mRNA in adipose were approximately 70 times higher vs. placenta. LTH significantly reduced expression of OB-Ra (short-isoform) in the hypothalamus (P=0.0156), while resulting in a significant increase in adrenal OB-Rb (long-form) expression (P<0.03). Our data suggest that leptin is a hypoxia-inducible gene in the ovine fetus and OB-R expression is altered by LTH. These changes may be responsible in part, for our previously observed alterations in fetal hypothalamic-pituitary-adrenal function following LTH.  相似文献   

16.
Eleven Merino sheep fetuses were supplemented with glucose by direct continuous intravenous infusion of 50% dextrose into the fetus from day 115 of gestation until spontaneous delivery. Infusion rates of 15 or 25 g/day per kg were used and equivalent volumes of saline were infused into 11 control fetuses. Infusion periods approximated 27 days in both groups. Fetal plasma glucose concentrations were significantly (P less than 0.001) elevated throughout glucose infusion and resulted in variable but consistently higher plasma insulin concentrations in the glucose than in the saline-infused fetuses. Glucose-infused fetuses were significantly heavier than controls (mean +/- SEM; 3.86 +/- 0.16 vs 3.28 +/- 0.24 kg, P less than 0.05) and body fat depots (in g/kg body wt.) were larger in glucose-infused than control fetuses (9.91 +/- 0.65 vs 6.73 +/- 0.37, P less than 0.005, for internal brown fat depots; 1.25 +/- 0.44 vs 0.27 + 0.13, P less than 0.05, for subcutaneous white adipose tissue). The results indicate that growth and lipid deposition in the sheep fetus are responsive to increased glucose supply, an effect which may be mediated through the actions of insulin. Mean gestation length was 146.60 +/- 1.45 days for controls and 144.18 +/- 1.23 days for glucose-infused animals (normal term 150 days).  相似文献   

17.
It has been proposed that fetal adaptations to intrauterine nutrient deprivation permanently reprogram the cardiovascular system. We investigated the impact of restricted periconceptional nutrition and/or restricted gestational nutrition on fetal arterial blood pressure (BP), heart rate, rate pressure product, and the fetal BP responses to ANG II and the angiotensin-converting enzyme inhibitor captopril during late gestation. Restricted periconceptional nutrition resulted in an increase in fetal mean arterial BP between 115 and 125 days gestation (restricted 41.5 +/- 2.8 mmHg, n = 12; control 38.5 +/- 1.5 mmHg, n = 13) and between 135 and 147 days gestation (restricted 50.5 +/- 2.2 mmHg, n = 8; control 42.5 +/- 1.9 mmHg, n = 10) as well as an increase in the rate pressure product in twin, but not singleton, fetuses between 115 and 147 days gestation. Mean BP and fetal plasma ACTH were also positively correlated in twin, but not singleton, fetuses. This is the first demonstration that maternal undernutrition during the periconceptional period results in an increase in fetal arterial BP. This increase occurs concomitantly with an increase in fetal ACTH but is not dependent on activation of the fetal renin-angiotensin system.  相似文献   

18.
19.
Dramatic alternations in maternal metabolism occur during gestation and lactation, especially glucose and fat metabolism. For example, in rats, the amount of body fat mass increases during gestation, then decreases just prior to delivery, and remains low after parturition. To investigate the factors involved in such changes in maternal fat mass, messenger ribonucleic acid (mRNA) levels of adipocytokines, peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and tumor necrosis factor-alpha (TNF-alpha), were examined in the intraabdominal adipose tissue of non-pregnant rats, pregnant rats and postpartum rats. We also examined the issue of whether apoptosis, which could be promoted by PPAR-gamma and TNF-alpha, is involved in any of the changes in maternal fat mass The activity of lipoprotein lipase (LPL) and hormone sensitive lipase (HSL) in adipose tissue was also measured. PPAR-gamma and TNF-alpha mRNA levels remained constant during the gestational and postpartum periods. Apoptosis was not detected at any time as evidenced by DNA laddering and in situ staining. LPL activity was significantly increased at day 5 and remained elevated until day 14 of gestation. HSL activity was significantly increased at day 10 of gestation and then decreased after delivery, at day 10 of lactation. In conclusion, during the gestational and postpartum period of rats, changes in maternal fat mass did not directly correlate with the levels of expression of PPAR-gamma and TNF-alpha mRNA. Apoptosis also does not appear to influence on fat mass change. The changes in LPL and HSL activities during gestation suggest that these enzymes might be regulators of maternal adipose tissue level.  相似文献   

20.
Basal lung expansion is an important determinant of alveolar epithelial cell (AEC) phenotype in the fetus. Because basal lung expansion increases toward term and is reduced after birth, we hypothesized that these changes would be associated with altered proportions of AECs. AEC proportions were calculated with electron microscopy in fetal and postnatal sheep. Type I AECs increased from 4.8 +/- 1.3% at 91 days to 63.0 +/- 3.6% at 111 days of gestation, remained at this level until term, and decreased to 44.8 +/- 1.8% after birth. Type II AECs increased from 4.3 +/- 1.5% at 111 days to 29.6 +/- 4.1% at 128 days of gestation, remained at this level until term, and then increased to 52.9 +/- 1.5% after birth. Surfactant protein (SP)-A, -B and -C mRNA levels increased with increasing gestational age before birth, but the changes in SP expression after birth were inconsistent. Thus before birth type I AECs predominate, whereas after birth type II AECs predominate, possibly due to the reduction in basal lung expansion associated with the entry of air into the lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号