首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
How Trp repressor binds to its operator.   总被引:10,自引:4,他引:10       下载免费PDF全文
We propose that the generally accepted model of a single Trp repressor dimer binding to a center of symmetry in the natural trp operator (Otwinowski et al., 1988) is wrong. We show here that the Trp repressor binds to a sequence whose center is located four base pairs either to the right or to the left of the central axis of symmetry that was previously identified. We show that: (i) the oligonucleotide used by Otwinowski et al. is not retarded by the Trp repressor in a mobility shift assay under conditions wherein a shorter oligonucleotide carrying our consensus sequence is retarded, (ii) that methylation protection experiments on the full natural operator sequence and the short oligonucleotide protect similar patterns and (iii) that by varying every base in the shorter oligonucleotide, we can demonstrate an optimal sequence for Trp repressor binding.  相似文献   

3.
Intracellular Trp repressor levels in Escherichia coli.   总被引:4,自引:2,他引:4       下载免费PDF全文
A radioimmunoassay for the Trp repressor protein of Escherichia coli was developed with antisera raised against purified Trp repressor protein. This assay was used to directly measure the intracellular Trp repressor content in several E. coli K-12 and B/r strains. Repressor levels varied from 2.5- to 3-fold in response to L-tryptophan concentration in the growth medium (15 to 44 ng of repressor per mg of protein). Neither cell growth rate nor culture age had a significant effect on repressor concentrations within the cell. Addition of L-tryptophan to the growth medium resulted in lowered intracellular levels of Trp repressor. The absolute amounts of native Trp repressor molecules per cell varied between 120 and 375 dimers in the presence and absence of L-tryptophan in the culture medium, respectively. Assuming an intracellular volume of 7.3 microliters/10(10) E. coli cells, the Trp repressor concentration varied from 270 to 850 nM in response to extracellular tryptophan levels. These findings represent the first direct measurements of Trp repressor levels in E. coli and confirm the autoregulatory nature of the trpR gene.  相似文献   

4.
In the arginine regulon of Escherichia coli K12 each of the eight operator sites consists of two 18-base-pair-long palindromic sequences called ARG boxes. In the operator sites for the structural genes of the regulon the two ARG boxes are separated by three base-pairs, in the regulatory gene argR they are separated by two base-pairs. The hexameric arginine repressor, the product of argR, binds to the two ARG boxes in an operator in the presence of L-arginine. From the results of various kinds of in vitro footprinting experiments with the ARG boxes of argF and argR (DNase I protection, hydroxyl radical, ethylation and methylation interference, methylation protection) it can be concluded that: (1) the repressor binds simultaneously to two adjacent ARG boxes; (2) that it binds on one face of the double helix; and (3) that it forms contacts with the major and minor grooves of each ARG box, but not with the central three base-pairs. The repressor can bind also to a single ARG box, but its affinity is about 100-fold lower than for two ARG boxes. From gel retardation experiments with 3H-labeled repressor and 32P-labeled argF operator DNA, it is concluded that the retarded DNA-protein complex contains no more than one repressor molecule per operator site and that most likely one hexamer binds to two ARG boxes. The bound repressor was shown to induce bending of argF operator DNA. The bending angle calculated from the results of gel retardation experiments is about 70 degrees and the bending center was located within the region encompassing the ARG boxes. The main features that distinguish the arginine repressor from other repressors studied in E. coli are its hexameric nature and the simultaneous binding of one hexameric molecule to two palindromic ARG boxes that are close to each other.  相似文献   

5.
Summary In the lac operon, the existence of a secondary repressor binding site, inside Z gene, had been inferred from in vitro binding studies (Reznikoff et al., 1974; Gilbert et al., 1975).A serie of deletions have been constructed from a lac transducing bacteriophage. Some of those deleted bacteriophages have still the property of derepressing a chromosomal lac operon, even though they do not contain any more the lac operator. This phenomenon is an indication that the secondary repressor binding site is also active in vivo.  相似文献   

6.
From small-angle X-ray scattering experiments on solutions of Escherichia coli lac repressor and repressor tryptic core, we conclude that the domains of repressor that bind to operator DNA lie at the ends of an elongated molecule. The addition of the inducer, isopropyl-β-d-thiogalactoside, to either repressor or core does not produce a measurable structural change, since the radius of gyration of repressor is 40.3 ± 1.9 Å without and 42.2 ± 1.7 Å with isopropyl-β-d-thiogalactoside; the core radius of gyration is 35.4 ± 1.1 Å without ligand and 36.3 ± 1.1 Å with isopropyl-β-d-thiogalactoside. In the context of data from single crystals of repressor and core, the measured radii of gyration are shown to be consistent with a core (or repressor) molecule of dimensional anisotropy 1: (1.5 to 2.0): (3.0 to 4.0). The 5 Å difference in radius of gyration between native and core repressor is interpreted to mean that the amino terminal 59 residues (headpieces) lie at the ends of an elongated repressor molecule. This structure implies that the repressor may have DNA binding sites, consisting of two adjacent headpieces, on each end of the molecule and this binds to the DNA with its long axis perpendicular to the DNA.  相似文献   

7.
The positions of interference points between the IclR repressor of the acetate operon of Escherichia coli and its specific operator were examined. The number and nature of nucleotides essential to repressor binding were determined by scanning populations of DNA previously methylated at guanine residues by dimethyl sulfate, or depurinated by treatment with formic acid, or depyrimidated by treatment with hydrazine. A total of 46 nucleotides, distributed almost equally between the two strands of the operator region, were found to be functionally important, although to a varying extent. These are clustered in two successive domains which expand from nucleotide -54 to nucleotide -27 and can organize in a palindrome-like structure containing a large proportion of A and T residues.  相似文献   

8.
9.
We analysed the conformational states of free, tet operator-bound and anhydrotetracycline-bound Tet repressor employing a Trp-scanning approach. The two wild-type Trp residues in Tet repressor were replaced by Tyr or Phe and single Trp residues were introduced at each of the positions 162-173, representing part of an unstructured loop and the N-terminal six residues of alpha-helix 9. All mutants retained in vivo inducibility, but anhydrotetracycline-binding constants were decreased up to 7.5-fold when Trp was in positions 169, 170 and 173. Helical positions (168-173) differed from those in the loop (162-167) in terms of their fluorescence emission maxima, quenching rate constants with acrylamide and anisotropies in the free and tet operator-complexed proteins. Trp fluorescence emission decreased drastically upon atc binding, mainly due to energy transfer. For all proteins, either free, tet operator bound or anhydrtetracycline-bound, mean fluorescence lifetimes were determined to derive quenching rate constants. Solvent-accessible surfaces of the respective Trp side chains were calculated and compared with the quenching rate constants in the anhydrotetracycline-bound complexes. The results support a model, in which residues in the loop become more exposed, whereas residues in alpha-helix 9 become more buried upon the induction of TetR by anhydrotetracycline.  相似文献   

10.
11.
Preferential binding of the β-anomer of allolactose to the lactose repressor of Escherichia coli was demonstrated by two methods: (1) by repeated washing of ammonium sulfate precipitates of the allolactose-repressor complex and (2) by competitive inhibition of allolactose binding by isopropyl-β-d-thiogalacto-side. Quantitation showed that one β-allolactose binds per isopropyl-β-d-thiogalactoside binding site. A control system is postulated.  相似文献   

12.
We constructed mutants of the Trp repressor from Escherichia coli K-12 with all possible single amino acid exchanges at positions 79 and 80 (residues 1 and 2 of the recognition helix). We tested these mutants in vivo by measuring the repression of synthesis of β-galactosidase with symmetric variants of α- and β-centered trp operators, which replace the lac operator in a synthetic lac system. The Trp repressor carrying a substitution of isoleucine 79 by lysine, showed a marked specificity change with respect to base pair 7 of the α-centered trp operator. Gel retardation experiments confirmed this result. Trp repressor mutant IR79 specifically recognizes a trp operator variant with substitutions in positions 7 and 8. Another mutant, with glycine in position 79, exhibited loss of contact at base pair 7. We speculate that the side chain of Ile79 interacts with the AT base pairs 7 and 8 of the α-centered trp operator, possibly with the methyl groups of thymines. Replacement of thymine in position 7 or 8 by uracil confirms the involvement of the methyl group of thymine 8 in repressor binding. Several Trp repressor mutants in position 80 (i.e. AI80, AL80, AM80 and AP80) broaden the specificity of the Trp repressor for α-centered trp operator variants with exchanges in positions 3, 4 and 5.  相似文献   

13.
The binding of Escherichia coli Gal repressor to linear DNA fragments containing two binding sites (OE and OI) within the gal operon was analyzed in vitro with quantitative footprint and mobility-shift techniques. In vivo analysis of the regulation of the gal operon [Haber, R., & Adhya, S. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 9683-9687] has suggested the role of a regulatory "looped complex" mediated by the association of Gal repressor dimers bound at OE and OI. The binding of Gal repressor to a single site can be described by a model in which monomer and dimer are in equilibrium and only the dimer binds to DNA. At pH 7.0, 25 mM KCl, and 20 degrees C, the binding and dimerization free energies are comparable, suggesting that the equilibrium governing the formation of dimers may be important to regulation. The two intrinsic binding constants, delta GI and delta GE, and a constant describing cooperativity, delta GIE, were determined by footprint titration analysis as a function of pH, [KCl], and temperature. Only at 4 and 0 degrees C was delta GIE negative, signifying cooperative binding. These results are thought to be due to a weak dimer to tetramer association interface. delta GE and delta GI had maximal values between pH 6 and pH 7. The dependence of these constants on [KCl] corresponded to the displacement of approximately 2 ion equiv. The temperature dependence could be described by a change in the heat capacity, delta Cp, of -2.3 kcal mol-1 deg-1. Mobility-shift titration experiments conducted at 20 and 0 degrees C yielded values for delta GIE that were consistent with those resolved from the footprint analysis. Unique values of delta GIE were determined by analysis of mobility-shift titrations of Gal repressor with wild-type operator subject to the constraint that delta GE = delta GI: a procedure that eliminates the need to simultaneously analyze wild-type titrations with titrations of OE- and OI- operators.  相似文献   

14.
The electrostatic potential surfaces were characterized for trp repressor models that bind to DNA with sequence specificity, without specificity, and not at all. Comparisons among the surfaces were used to isolate protein surface features likely to be important in DNA binding. Models that differ in protein conformation and tryptophan-analogue binding consistently showed positive potential associated with the protein surfaces that interact with the DNA major groove. However, negative potential is associated with the trp repressor surface that contacts the DNA minor groove. This negative potential is significantly neutralized in the protein conformation that is bound to DNA. Positive potential is also associated with the tryptophan binding-site surface, a consequence of the tryptophan- or tryptophan analogue-induced allosteric change. This protein region is complementary to the strongest negative potential associated with the DNA phosphate backbone and is also present in the isolated protein structure from the protein-DNA complex. The effects of charge-change mutation, pH dependence, and salt dependence on the electrostatic potential surfaces were also examined with regard to their effects on protein-DNA binding constants. A consistent model is formed that defines a role for long-range electrostatics early in the protein-DNA association process and complements previous structural, molecular association, and mutagenesis studies.  相似文献   

15.
The Escherichia coli purine repressor, PurR, binds to a 16-bp operator sequence and coregulates the genes for de novo synthesis of purine and pyrimidine nucleotides, formation of a one-carbon unit for biosynthesis, and deamination of cytosine. We have characterized the purified repressor. Chemical cross-linking indicates that PurR is dimeric. Each subunit has an N-terminal domain of 52 amino acids for DNA binding and a C-terminal 289-residue domain for corepressor binding. Each domain was isolated after cleavage by trypsin. Sites for dimer formation are present within the corepressor binding domain. The corepressors hypoxanthine and guanine bind cooperatively to distinct sites in each subunit. Competition experiments indicate that binding of one purine abolishes cooperativity and decreases the affinity and the binding of the second corepressor. Binding of each corepressor results in a conformation change in the corepressor binding domain that was detected by intrinsic fluorescence of three tryptophan residues. These experiments characterize PurR as a complex allosteric regulatory protein.  相似文献   

16.
The mechanisms of the requirement of glucose for steroidogenesis were investigated by monitoring the uptake of the glucose analogue 2-deoxy-D-glucose by rat testis and tumour Leydig cells. The characteristics of glucose transport in both of these cell types were found to resemble those of the facilitated-diffusion systems for glucose found in most other mammalian cells. The Leydig cells took up 2-deoxy-D-glucose but not L-glucose, and the uptake was inhibited by both cytochalasin B and forskolin. In the presence of luteinizing hormone, the rate of 2-deoxy-D-glucose uptake by both cell types was increased by approx. 50%. In addition to D-glucose, it was shown that the Leydig cells could also utilize 3-hydroxybutyrate or glutamine to maintain steroidogenesis.  相似文献   

17.
The promoter-operator region of the aroL gene of Escherichia coli K-12 contains three TYR R boxes and one TrpR binding site. Mutational analysis showed that TYR R boxes 1 and 3 are essential for TyrR-mediated regulation of aroL expression, while a fully functional TYR R box 2 does not appear to be essential for regulation. Regulation mediated by the TrpR protein required the TYR R boxes and TrpR site to be functional and was observed in vivo only with a tyrR+ strain. Under conditions favoring the formation of TyrR hexamers, DNase I protection experiments revealed the presence of phased hypersensitive sites, indicative of DNA backbone strain. This suggests that TyrR-mediated repression involves DNA looping. Purified TrpR protein protected the putative TrpR binding site in the presence of tryptophan, and this protection was slightly enhanced in the presence of TyrR protein. This result along with the in vivo findings implies that TyrR and TrpR are able to interact in some way. Inserting 4 bp between TYR R box 1 and the TrpR binding site results in increased tyrosine repression and the abolition of the tryptophan effect. Identification of a potential integration host factor binding site and repression studies of a himA mutant support the notion that integration host factor binding normally exerts a negative effect on tyrosine-mediated repression.  相似文献   

18.
The metJ gene encoding the methionine aporepressor was placed under the control of a strong and inducible promoter, ptac. Bacterial strains carrying the recombinant plasmid pIP35 overproduced the regulatory protein by a factor of 200 over the wild type strain as determined by the immunoblot technique. The purified metJ gene product negatively controls the expression of the metF gene, in a cell-free system as shown by repression of beta-galactosidase synthesis under the control of the metF promoter. The metJ protein binds to a DNA fragment containing the potential operator of the metF gene with an affinity which is 10 times greater in the presence of S-adenosylmethionine than in its absence. Equilibrium dialysis experiments showed that the met aporepressor binds 2 mol of S-adenosylmethionine per mol of dimer with a dissociation constant of 200 microM.  相似文献   

19.
20.
Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant ModE proteins apparently mimic in its conformation the native ModE-molybdate complex, which binds to a DNA sequence motif of TATAT-7bp-TAYAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号