首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation between the oxidative processes in tert-butyl hydroperoxide (tBHP)-exposed red blood cells and the reactions of oxygen consumption and release were investigated. Red blood cell exposure to tBHP resulted in transient oxygen release followed by oxygen consumption. The oxygen release in red blood cells was associated with intracellular oxyhaemoglobin oxidation. The oxygen consumption proceeded in parallel with free radical generation, as registered by chemiluminescence, but not to membrane lipid peroxidation. The oxygen consumption was also observed in membrane-free haemolyzates. The order of the organic hydroperoxide-induced reaction of oxygen release with respect to the oxidant (tBHP) was estimated to be 0.9 +/- 0.1 and that of the oxygen consumption reaction was determined to be 2.4 +/- 0.2. The apparent activation energy values of the oxygen release and oxygen consumption were found to be 107.5 +/- 18.5 kJ/mol and 71.0 +/- 12.5 kJ/mol, respectively. The apparent pKa value for the functional group(s) regulating the cellular oxyHb interaction with the oxidant in tBHP-treated red blood cells was estimated to be 6.7 +/- 0.2 and corresponded to that of distal histidine protonation in haemoprotein. A strong dependence of tBHP-induced lipid peroxidation on the oxygen concentration in a red blood cell suspension was observed (P50 = 32 +/- 3 mmHg). This dependence correlated with the oxygen dissociation curve of cellular haemoglobin. The order of the membrane lipid peroxidation reaction with respect to oxygen was found to be 0.5 +/- 0.1. We can conclude that the intensity of the biochemical process of membrane lipid peroxidation in tBHP-exposed erythrocytes is controlled by small changes in such physiological parameters as the oxygen pressure and oxygen affinity of cellular haemoglobin. Neither GSH nor oxyhaemoglobin oxidation depended on oxygen pressure.  相似文献   

2.
We used myeloperoxidase-containing HL-60 cells to generate phenoxyl radicals from nontoxic concentrations of a vitamin E homologue, 2,2, 5,7,8-pentamethyl-6-hydroxychromane (PMC) to test whether these radicals can induce oxidative stress in a physiological intracellular environment. In the presence of H(2)O(2), we were able to generate steady-state concentrations of PMC phenoxyl radicals readily detectable by EPR in viable HL-60 cells. In HL-60 cells pretreated with succinylacetone, an inhibitor of heme synthesis, a greater than 4-fold decrease in myeloperoxidase activity resulted in a dramatically decreased steady-state concentrations of PMC phenoxyl radicals hardly detectable in EPR spectra. We further conducted sensitive measurements of GSH oxidation and protein sulfhydryl oxidation as well as peroxidation in different classes of membrane phospholipids in HL-60 cells. We found that conditions compatible with the generation and detection of PMC phenoxyl radicals were not associated with either oxidation of GSH, protein SH-groups or phospholipid peroxidation. We conclude that PMC phenoxyl radicals do not induce oxidative stress under physiological conditions in contrast to their ability to cause lipid peroxidation in isolated lipoproteins in vitro.  相似文献   

3.
Development of membrane damage in erythrocytes in the presence of the radical-forming oxidant t-butylhydroperoxide is a well established fact (see, for example, Deuticke et al. (1986) Biochim. Biophys. Acta 854, 169-183). We have now demonstrated that a mere pulse treatment of erythrocytes (5-15 min) with this agent leads to subsequent development of progressive oxidative membrane damage in spite of the absence of exogenous oxidant. Damage comprises the occurrence of ion leakiness and subsequent colloid-osmotic lysis, enhancement of the transbilayer mobility of phospholipid analogues, and lipid peroxidation. There is, however, only very little concomitant oxidation and precipitation of hemoglobin. Defect formation is not due to oxidation of SH-groups nor is it directly related to lipid peroxidation, since it can be suppressed by thiourea without concommitant inhibition of lipid peroxidation. This 'spontaneous' development of membrane damage can be antagonized by metabolic substrates and by desferrioxamine, indicating that lack of protective metabolic resources as well as the presence of catalytic metal (iron) complexes are required for the development of membrane damage. This progressive development of injury in cells only temporarily exposed to an exogenous oxidant may be regarded as a more appropriate model for oxidative membrane damage under pathophysiological conditions in vivo than cells exposed to continuous damage by exogenous oxidants.  相似文献   

4.
Growing evidence suggests that free radicals derived from polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia-reperfusion injury. To elucidate the cellular mechanism by which activated PMNs exacerbate ischemic myocardial damage, we investigated the extent of cell injury, assessed by the morphological deterioration, free radical generation, and lipid peroxidation in mouse embryo myocardial cells coincubated with activated PMNs. The generation of PMN-derived free radicals was related to the extent of myocardial cell injury. When myocardial cell sheets were subjected to hypoxia and glucose-free media, myocardial cells were injured (cristalysis in the mitochondria and disruption of the sarcolemma) after adding various PMN activators, and the injury extended to the adjacent cells. Chemiluminescent emission and production of thiobarbituric acid-reactive substances in the coincubated cells increased markedly compared with myocardial cells or PMNs alone. The augmented lipid peroxidation coincided with the progression of myocardial cell injury. Catalase inhibited the myocardial cell injury by 52%, the chemiluminescence by 46%, and lipid peroxidation by 50%, whereas superoxide dismutase exhibited less pronounced inhibition. These results indicate that a chain reaction of lipid peroxidation in myocardial cells induced by PMN-derived free radicals closely correlates with membrane damage and contributes to the propagation of irreversible myocardial cell damage.  相似文献   

5.
We have studied erythrocyte Ca2+-ATPase as a model target for elucidating effects of activated oxygen on the erythrocyte membrane. Either intracellular or extracellular generation of activated oxygen causes parallel decrements in Ca2+-ATPase activity and cytoplasmic GSH, oxidation of membrane protein thiols, and lipid peroxidation. Subsequent incubation with either dithiothreitol or glucose allows only partial recovery of Ca2+-ATPase, indicating both reversible and irreversible components which are modeled herein using diamide and t-butyl hydroperoxide. The reversible component reflects thiol oxidation, and its recovery depends upon GSH restoration. The irreversible component is largely due to lipid peroxidation, which appears to act through mechanisms involving neither malondialdehyde nor secondary thiol oxidation. However, some portion of the irreversible component could also reflect oxidation of thiols which are inaccessible for reduction by GSH, since we demonstrate existence of different classes of thiols relevant to Ca2+-ATPase activity. Activated oxygen has an exaggerated effect on Ca2+-ATPase of GSH-depleted cells. Sickle erythrocytes treated with dithiothreitol show a heterogeneous response of Ca2+-ATPase activity. These findings are potentially relevant to oxidant-induced hemolysis. They also may be pertinent to oxidative alteration of functional or structural membrane components in general, since many components share with Ca2+-ATPase both free thiols and close proximity to unsaturated lipid.  相似文献   

6.
Erythrocytes prepared from riboflavin- and tocopherol-deficient (RT?) and from control rats were used to investigate the mechanism of oxidative hemolysis by the factors of favism. RT? erythrocytes have a defense system against the oxidative stress which is blocked either where regeneration of GSH occurs or the scavenging of the radicals from the membrane is prevented. The oxidative factors used were isouramil, divicine and diamide. When RT? erythrocytes were treated with isouramil, GSH decreased to undetectable levels and was not regenerated. Complete hemolysis occurred, but no oxidation of SH groups of membrane proteins or formation of spectrin polymers was detected. A similar effect was observed with diamide. However, SH groups of membrane proteins were completely oxidized and spectrin polymers were formed. Extensive lipid peroxidation was also detected together with a 30% fall in the arachidonic acid level. Control erythrocytes treated with either isouramil or diamide were not hemolyzed. When treated with isouramil, after a fall in the first few minutes, the GSH level was completely regenerated after 20 min. Incubation with diamide caused extensive oxidation of SH groups of membrane proteins and formation of spectrin polymers. No lipid peroxidation was detected after treatment with isouramil, but the same decrease of arachidonic acid occurred as in RT? erythrocytes. These results support the hypothesis that oxidative hemolysis by the factors of favism is caused by uncontrolled peroxidation of membrane lipids.  相似文献   

7.
8.
Flavonoids protect cells damaged by oxidative stress. This, together with other biological activities, is governed by structural features of flavonoids and the nature and physical state of the cell membrane. We have previously proved that membrane cholesterol contents modify the protective power of quercetin and rutin against oxidative stress in erythrocytes. Here we analyzed the lipid asymmetry, the integrity, and cell viability of native and cholesterol-modified erythrocytes exposed to tert-butyl hydroperoxide in presence of both antioxidants. Our results provides clear evidence that quercetin affords better protection than rutin against lipid peroxidation, ROS generation, erythrophagocytosis and cellular instability in oxidized erythrocytes with normal and modified cholesterol contents. Both antioxidants provided a high of protection for the transbilayer aminophospholipid asymmetry, only partly preserving cell morphology in oxidized control and cholesterol-depleted erythrocytes. Cholesterol depletion reduced the protection provided by both antioxidants against phosphatidylserine externalization, erythrophagocytosis and hemolysis, which is in accordance with the lower degree of preservation against lipid peroxidation observed in oxidized cholesterol-depleted erythrocytes. This lower degree of preservation is presumably attributable to the low antioxidant contents in these erythrocyte membranes, or even to a lower efficiency of the antioxidant in a modified lipid environment due to the removal of cholesterol.  相似文献   

9.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

10.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

11.
During the course of radical oxidation, cholesterol may exert seemingly contradictory effects. In order to gain a better understanding of the relationship between cholesterol levels and membrane susceptibility to oxidative damage induced by reactive oxygen species (ROS), here we analyze the integrity and structural stability of cholesterol-modified (enriched or depleted) and unmodified (control) erythrocytes exposed to tert-butyl hydroperoxide. The oxidant significantly increased ROS production, with almost complete oxidation of hemoglobin and a reduction in GSH content in the different erythrocyte groups at 2 mM concentration. These changes were accompanied by losses of cholesterol and total phospholipids, the main decreases being in phosphatidylethanolamine and phosphatidylcholine. The highest lipid loss was found in the cholesterol-depleted group. Fatty acid analyses revealed changes only in peroxidized cholesterol-modified erythrocytes, with decreases in linoleic and arachidonic acids. Fluorescence anisotropy studies showed an increase in the fluidity of the negatively charged surface of peroxidized control erythrocytes. Increased hemolysis and a positive correlation between cellular osmotic fragility and malondialdehyde contents were found in all peroxidized groups. These findings provide evidence that the modification of cholesterol levels in the erythrocyte membrane has provoking effects on peroxidation, with corresponding increases in oxidative damage in the treated cell, possibly as a consequence of lipid bilayer destabilization.  相似文献   

12.
Xanthic acids have long been known to act as reducing agents. Recently, D609, a tricyclodecanol derivative of xanthic acid, has been reported to have anti-apoptotic and anti-inflammatory properties that are attributed to specific inhibition of phosphatidyl choline phospholipase C (PC-PLC). However, because oxidative stress is involved in both of these cellular responses, the possibility that xanthates may act as antioxidants was investigated in the current study. Finding that xanthates efficiently scavenge hydroxyl radicals, the mechanism by which D609 and other xanthate derivatives may protect against oxidative damage was further examined. The xanthates studied, especially D609, mimic glutathione (GSH). Xanthates scavenge hydroxyl radicals and hydrogen peroxide, form disulfide bonds (dixanthogens), and react with electrophilic products of lipid oxidation (acrolein) in a manner similar to GSH. Further, upon disulfide formation, dixanthogens are reduced by glutathione reductase to a redox active xanthate. Supporting its role as an antioxidant, D609 significantly (p < 0.01) reduces free radical-induced changes in synaptosomal lipid peroxidation (TBARs), protein oxidation (protein carbonyls), and protein conformation. Thus, in addition to inhibitory effects on PC-PLC, D609 may prevent cellular apoptotic and inflammatory cascades by acting as antioxidants and novel GSH mimics. These results are discussed with reference to potential therapeutic application of D609 in oxidative stress conditions.  相似文献   

13.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. Heat enhances the cytotoxic effect of certain anticancer agents such as bleomycin, but the mechanisms involved in cell killing are currently unknown. Bleomycin generates reactive oxygen species. It is likely that hyperthermia itself also increases oxidative stress in cells. We evaluate whether oxidative stress has a role in the mechanism of cell death caused by bleomycin and heat in Chinese hamster ovary cells. Heat (41 to 44 degrees C) increased cytotoxicity of bleomycin, evaluated by clonogenic cell survival. Decreased levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus enhancing cytotoxic responses to heat and to oxidant-generating drugs. We determine the involvement of four major cellular antioxidant defenses, superoxide dismutase (SOD), the glutathione redox cycle (GSH cycle), catalase, and glutathione S-transferase (GST), in cellular sensitivity to bleomycin, alone or combined with hyperthermia. These cellular defenses were inhibited by diethyldithiocarbamate, l-buthionine sulfoximine, aminotriazole, and ethacrynic acid, respectively. We show that levels of antioxidants (SOD, GSH cycle, and GST) affect cellular cytotoxic responses to bleomycin, at normal and elevated temperatures (41 to 44 degrees C), suggesting the involvement of oxidative stress. Bleomycin and iron caused oxidative damage to membrane lipids in intact cells, at 37 and 43 degrees C. Lipid peroxidation was evaluated by fluorescence detection of thiobarbituric acid-reactive products. There was an increase in damage to membrane lipids when the antioxidant defenses, SOD and catalase, were inhibited. The differing effects of antioxidant inhibitors on bleomycin-induced cytotoxicity and membrane lipid damage suggest that different mechanisms are involved in these two processes. However, free radicals appear to be involved in both cases. The marked sensitization of cells by diethyldithiocarbamate, to both bleomycin-induced cytotoxicity and lipid peroxidation, suggests that superoxide could be involved in both of these processes.  相似文献   

14.
Three models of free radical-induced cell injury   总被引:8,自引:0,他引:8  
Three models of free radical-induced cell injury are presented in this review. Each model is described by the mechanism of action of few prototype toxic molecules. Carbon tetrachloride and monobromotrichloromethane were selected as model molecules for alkylating agents that do not induce GSH depletion. Bromobenzene and allyl alcohol were selected as prototypes of GSH depleting agents. Paraquat and menadione were presented as prototypes of redox cycling compounds. All these groups of toxins are converted, during their intracellular metabolism, to active species which can be radical species or electrophilic intermediates. In most cases the activation is catalyzed by the microsomal mixed function oxidase system, while in other cases (e.g. allyl alcohol) cytosolic enzymes are responsible for the activation. Radical species can bind covalently to cellular macromolecules and can promote lipid peroxidation in cellular membranes. Of course both phenomena produce cell damage as in the case of CCl4 or BrCCl3 intoxication. However, the covalent binding is likely to produce damage at the molecular site where it occurs; lipid peroxidation, on the other hand, besides causing loss of membrane structure, also gives rise to toxic products such as 4-hydroxyalkenals and other aldehydes which in principle can move from the site of origin and produce effects at distant sites. Electrophilic intermediates readily reacts with cellular nucleophiles, primarily with GSH. The result is a severe GSH depletion as in the case of bromobenzene or allyl alcohol intoxication. When the depletion reaches some threshold values lipid peroxidation develops abruptly and in an extensive way. This event is accompanied by cellular death. The reason for which lipid peroxidation develops in a cell severely depleted of GSH remains to be clarified. Probably the loss of the defense systems against a constitutive oxidative stress is not compatible with cellular life. Some free radicals generated by one-electron reduction can react with oxygen to give superoxide anions which can be converted to other more dangerous reactive oxygen species. This is the case of paraquat and menadione. Damage to cellular macromolecules is due to the direct action of these oxygen radicals and, at least in the menadione-induced cytotoxicity, lipid peroxidation is not involved. All these initial events affect the protein sulfhydryl groups in the membranes. Since some protein thiols are essential components of the molecular arrangement responsible for the Ca2+ transport across cellular membranes, loss of such thiols can affect the calcium sequestration activity of subcellular compartments, that is the capacity of mitochondria and microsomes to regulate the cytosolic calcium level.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Accumulating evidence that administration of S-adenosylmethionine (SAMe) protects hepatocytes against oxidative stress-mediated injury led us to evaluate the effect of SAMe on hepatocyte injury induced in culture by oxidant substance tert-butylhydroperoxide (1.5 mM tBHP) with regard to prevent mitochondrial injury. The pretreatment of hepatocyte culture with SAMe in doses of 0.25, 0.5, 1, 2.5, 5, 10, 25 and 50 mg/l for 30 min prevented the release of LDH from cells incubated for 30 min with tBHP in a dose dependent manner. The inhibitory effect of SAMe on lipid peroxidation paralleled the effect on cell viability. SAMe also moderated the decrease of the mitochondrial membrane potential induced by tBHP. Our results indicate that the inhibition of lipid peroxidation by SAMe can contribute to the prevention of disruption of both cellular and mitochondrial membranes. While the protective effect of SAMe against tBHP-induced GSH depletion was not confirmed, probably the most potent effect of SAMe on membranes by phospholipid methylation should be verified.  相似文献   

16.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

17.
The aim of the study was to estimate the changes caused by oxidative stress in structure and function of membrane of erythrocytes from patients with metabolic syndrome (MS). The study involved 85 patients with MS before pharmacological treatment and 75 healthy volunteers as a control group. Cholesterol level, lipid peroxidation, glutathione level (GSH), and antioxidant enzyme activities in erythrocytes were investigated. The damage to erythrocyte proteins was also indicated by means of activity of ATPase (total and Na+,K+ ATPase) and thiol group level. The membrane fluidity of erythrocytes was estimated by the fluorescent method. The cholesterol concentration and the level of lipid peroxidation were significantly higher, whereas the concentration of proteins thiol groups decreased in the patient group. ATPase and GSH peroxidase activities diminished compared to those in the control group. There were no differences in either catalase or superoxide dismutase activities. The membrane fluidity was lower in erythrocytes from patients with MS than in the ones from control group. These results show changes in red blood cells of patients with MS as a consequence of a higher concentration of cholesterol in the membrane and an increased oxidative stress.  相似文献   

18.
The organic hydroperoxide, tert-butyl hydroperoxide (t-BHP), is a useful model compound to study mechanisms of oxidative cell injury. In the present work, we examined the features of the interactions of this oxidant with Chinese hamster B14 cells. The aim of our study was to reveal a possible role of structural modifications in membranes and loss of DNA integrity in t-BHP-induced cell injury and death. The tert-butyl hydroperoxide treatment (100-1000 microM, 37 degrees C for 1h) did not decrease cell viability (as measured by cell-specific functional activity with an MTT test), but completely prevented cell growth. We observed intracellular reduced glutathione (GSH) oxidation and total glutathione (GSH+GSSG) depletion, a slight increase in the level of lipid-peroxidation products, an enhancement of membrane fluidity, intracellular potassium leakage and a significant decrease of membrane potential. At oxidant concentrations of 100-1500 microM, a significant damage to DNA integrity was observed as revealed by the Comet assay. The inhibition of cell proliferation (cell-growth arrest) may be explained by genotoxicity of t-BHP, by disturbance of the cellular redox-equilibrium (GSH oxidation) and by structural membrane modifications, which result in ion-non-selective pore formation. The disturbance in passive membrane permeability and the DNA damage may be the most dramatic cell impairments induced by t-BHP treatment. The presence of another oxidant, hypochlorous acid (HOCl), completely prevented t-BHP-induced DNA strand breaks, perhaps due to extracellular oxidation of t-BHP by HOCl.  相似文献   

19.
The reaction of nitrite with hemoglobin has become of increasing interest due to the realization that plasma nitrite may act as an NO congener that is activated by interaction with red blood cells. Using a combination of spectrophotometry, immuno-spin trapping, and EPR, we have examined the formation of radicals during the oxidation of oxyhemoglobin (oxyHb) and oxymyoglobin (oxyMb) by inorganic nitrite. The proposed intermediacy of ferryl species during this oxidation was confirmed by spectrophotometry using multiple linear regression analysis of kinetic data. Using EPR/spin trapping, a protein radical was observed in the case of oxyMb, but not oxyHb, and was inhibited by catalase. When DMPO spin trapping was combined with Western blot analysis using an anti-DMPO-nitrone antibody, globin/DMPO adducts of both oxyHb and oxyMb were detected, and their formation was inhibited by catalase. Catalase effects confirm the intermediacy of hydrogen peroxide as a heme oxidant in this system. Spectrophotometric kinetic studies revealed that the presence of DMPO elongated the lag phase and decreased the maximal rate of oxidation of both oxyHb and oxyMb, which suggests that the globin radical plays an active role in the mechanism of autocatalysis. Interestingly, the oxidation of oxyHb or oxyMb by nitrite, but not by hydrogen peroxide, produced a diffusible radical that was able to generate spin adducts on a bystander protein. This indicates that the oxidation of oxyhemeproteins by nitrite may cause more widespread oxidative damage than the corresponding oxidation by hydrogen peroxide. The immuno-spin trapping technique represents an important new development for the study of the range and extent of protein oxidation by free radicals and oxidants.  相似文献   

20.
Effects of anilofos on lipid peroxidation--an index of oxidative stress, ATPase activity--an integral part of active transport mechanisms for cations, GSH level and GST activity were evaluated in blood (erythrocyte/plasma), brain and liver of male rats after daily oral exposure to 50, 100 or 200 mg/kg for 28 days. None of the doses increased lipid peroxidation. The lowest dose, rather, produced marginally significant decrease in peroxidation in liver. Different doses of anilofos decreased GSH content and activities of GST and ATPases. Inhibition of total ATPase (34-44%) and Na+-K+-ATPase (45-52%) activities was maximum in liver, while that of Mg2+-ATPase (46-56%) was more in erythrocyte. Results indicate that anilofos may not cause oxidative damage to cell membrane in repeatedly exposed animals and may cause neuronal/cellular dysfunction by affecting ionic transport across cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号