首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used the photoaffinity analogs 8-azidoadenosine 5'-triphosphate (8-N3ATP) and 8-azidoguanosine 5'-triphosphate (8-N3GTP) to investigate the relationship between a viral induced protein (Mr = 120,000) in tobacco mosaic virus (TMV)-infected tobacco and the TMV-induced RNA-dependent RNA polymerase activity. When the radioactive analogs [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP were incubated with the tobacco tissue homogenate from TMV-infected plants, incorporation of label occurred into the viral induced protein in the presence of UV light. The incorporation was found to be totally dependent on UV-illumination and greatly enhanced by Mg2+. Saturation of photoincorporated label indicates an apparent Kd of 16 microM (+/- 3 microM) and 12 microM (+/- 3 microM) for 8-N3ATP and 8-N3GTP, respectively. Protection against photolabeling by [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP with various nonradioactive nucleotides and nucleosides suggests that the photolabeled site is protected best by nucleoside triphosphates. At 200 microM both deoxyribonucleoside triphosphates and ribonucleoside triphosphates were very effective at protecting the site from photolabeling. These data suggest that the photolabeled protein may be part of an RNA-dependent RNA polymerase. The utility of nucleotide photoaffinity analogs as a method to study viral induced nucleotide-binding proteins is discussed.  相似文献   

2.
Glucagon, a peptide hormone synthesized and secreted by alpha islet cells, regulates glucose homeostasis by several mechanisms. Using [gamma 32P]8N3GTP, a proven photoaffinity probe for GTP, a specific nucleotide binding site on human glucagon was detected that showed preference for GTP. Half-maximal saturation of photoinsertion into the polypeptide hormone was at 8-12 microM with either [alpha 32P]8N3GTP or [gamma 32P]8N3GTP. GTP protected photolabeling with an apparent kd of 15 microM, whereas ATP was less effective as a protector, exhibiting an apparent kd of about 30 microM. Maximal protection by GTP and ATP was over 90%. UTP, CTP, GDP, ADP, GMP, AMP, guanosine, adenosine, guanine, and adenine were much less effective protectors, indicating that binding is specific for purine nucleoside triphosphates, particularly GTP. Mg2+ at 150 microM enhanced photoinsertion (twofold), whereas at 2-10 mM, it inhibited photoinsertion. Both Ca2+ and Zn2+ at 0.2 mM decreased photoinsertion about 45%. Purification of chymotryptic and tryptic digests of photolabeled glucagon by reverse-phase high performance liquid chromatography (HPLC) revealed that the N-terminal peptide, HSQGTF, was the only peptide region covalently photomodified by [32P]8N3GTP. GTP, if present during photolysis, greatly reduced both photoinsertion into glucagon and the amount of radiolabeled peptide recovered on HPLC. The specificity of binding to the N-terminal region is suggestive of a physiological role for a glucagon-GTP complex in the mechanism of action of this hormone.  相似文献   

3.
Protein kinase Calpha (PKCalpha) is a critical component of pathways that govern cancer-related phenotypes such as invasion and proliferation. Proteins that serve as immediate substrates for PKCalpha offer potential targets for anticancer drug design. To identify specific substrates, a mutant of PKCalpha (M417A) was constructed at the ATP binding site such that it could bind a sterically large ATP analogue derivatized through the N6 amino group of adenosine ([gamma-32P]-N6-phenyl-ATP). Because this analogue could be utilized by the mutant kinase but not by wild-type PKCalpha (or presumably other protein kinase) to phosphorylate peptide or protein substrates, 32P-labeled products were the direct result of the mutant PKCalpha. Kinetic analysis with [gamma-32P]-N6-phenyl-ATP revealed that the mutant retained undiminished affinity for the peptide substrate (Km = 12.4 microM) and a Vmax value (10.3 pmol/min) that was only 3-fold lower than that exhibited by the wild-type enzyme with natural ATP. However, with [gamma-32P]ATP, the mutant had a somewhat lower affinity (Km = 82.8 microM) than the wild-type enzyme (Km = 9.3 microM) in vitro but was competent in causing aggressive motility in nonmotile MCF-10A human breast cells (with endogenous ATP), as previously described for wild-type PKCalpha. The FLAG-tagged PKCalpha mutant was expressed in MCF-10A cells and used to co-immunoprecipitate high-affinity substrates from lysates. Immunopellets were reacted with [gamma-32P]-N6-phenyl-ATP, and radiolabeled products were analyzed by SDS-PAGE and autoradiography. Mass spectrometry of selected bands identified several known substrates of PKC, thereby validating the methods used in these studies. These findings provide a foundation for future applications of this traceable PKCalpha mutant.  相似文献   

4.
A Mr = 34,000 protein present in the 100,000 X g supernatant fraction from A431 human epidermoid carcinoma cells is the major radiolabeled phosphate acceptor from [gamma-32P]ATP in a cell-free system requiring epidermal growth factor (EGF) and EGF receptor kinase. This protein is immunoprecipitated by IgG directed against avian Mr = 34,000 cellular substrate for pp60src. Phosphoamino acid analysis of the Mr = 34,000 protein labeled with 32Pi from [gamma-32P]ATP in a cell-free system requiring EGF and EGF receptor kinase yielded radiolabeled phosphotyrosine with no detectable radioactivity in phosphoserine or phosphothreonine.  相似文献   

5.
Localization of the ATP binding site on alpha-tubulin   总被引:2,自引:0,他引:2  
The binding site for ATP to tubulin was established by use of the photoaffinity label [gamma-32P]N3ATP. Photolysis of the analog in the presence of tubulin resulted in covalent modification of the protein as revealed by autoradiography of electropherograms. Scanning the autoradiograms showed that the ATP analog was bound mainly to the alpha subunit of the tubulin dimer; the alpha subunit was two to three times more radioactive than was the beta subunit. The location of a particular site on the alpha subunit was further defined by peptide maps. The alpha and beta subunits from affinity-labeled tubulin were separated and digested with Staphylococcus protease. Radioactivity was found predominantly in one peptide band from the alpha subunit. The location of the [gamma-32P]N3ATP binding site on the alpha subunit distinguishes it from the previously known exchangeable GTP binding site which is on the beta subunit. Moreover, excess GTP did not compete with [gamma-32P]N3ATP binding. The ATP binding site is distinct from the nonexchangeable GTP binding site. The GTP content of tubulin was the same after dialysis in 0.5 mM ATP as it was following dialysis against ATP-free buffer. Proof that the binding site for [gamma-32P]N3ATP is the same as that for ATP was obtained by competition experiments. In the presence of ATP, photolysis of the affinity analog did not label the alpha subunit preferentially.  相似文献   

6.
ATP-sensitive potassium (K(ATP)) channels are under complex regulation by intracellular ATP and ADP. The potentiatory effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We have previously reported that Kir6.2 can be directly labeled by 8-azido-[gamma-(32)P]ATP. However, the binding affinity of 8-azido-ATP to Kir6.2 was low probably due to modification at 8' position of adenine. Here we demonstrate that Kir6.2 can be directly photoaffinity labeled with higher affinity by [gamma-(32)P]ATP-[gamma]4-azidoanilide ([gamma-(32)P]ATP-AA), containing an unmodified adenine ring. Photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-AA is not affected by the presence of Mg(2+), consistent with Mg(2+)-independent ATP inhibition of K(ATP) channels. Interestingly, SUR1, which can be strongly and specifically photoaffinity labeled by 8-azido-ATP, was not photoaffinity labeled by ATP-AA. These results identify key differences in the structure of the nucleotide binding sites on SUR1 and Kir6.2.  相似文献   

7.
Binding of eIF-4E to the 5' m7G cap structure of eukaryotic mRNA signals the initiation of protein synthesis. In order to investigate the molecular basis for this recognition, photoaffinity labeling with [gamma-32P]8-N3GTP was used in binding site studies of human recombinant cap binding protein eIF-4E. Competitive inhibition of this cap analogue by m7GTP and capped mRNA indicated probe specificity for interaction at the protein binding site. Saturation of the binding site with [gamma-32P]8-N3GTP further demonstrated the selectivity of photoinsertion. Aluminum (III)-chelate chromatography and reverse-phase HPLC were used to isolate the binding site peptide resulting from digestion of photolabeled eIF-4E with modified trypsin. Amino acid sequencing identified the binding domain as the region containing the sequence Trp 113-Arg 122.Lys 119 was not identified in sequencing analysis nor was it cleaved by trypsin. These results indicate that Lys 119 is the residue directly modified by photoinsertion of [gamma-32P]8-N3GTP. A detailed understanding of eIF-4E.m7G mRNA cap interactions may lead the way to regulating this essential protein-RNA interaction for specific mRNA in vivo.  相似文献   

8.
Photoaffinity labeling with azidoadenine nucleotides was used to identify peptides from the ATP and AMP binding domains on chicken muscle adenylate kinase. Competition binding studies and enzyme assays showed that the 8-azido analogues of Ap4A and ATP modified only the MgATP2- site of adenylate kinase, whereas the 2-azido analogue of ADP modified the enzyme at both the ATP and AMP sites. The positions of the two nucleotide binding sites on the enzyme were deduced by isolating and sequencing the modified peptides. Photolabeled peptides were isolated by a new procedure that used metal chelate chromatography to affinity purify the photolabeled peptides prior to final purification by reverse-phase HPLC. The sequences of the peptides that were photolabeled with the 8-azido analogues corresponded to residues K28-L44, T153-K166, and T125-E135 of the chicken muscle enzyme. The residues that were present in both tryptic- and Staphylococcus aureus V-8 protease-generated versions of these peptides were assigned to the ATP binding domain on the basis of selective photoaffinity labeling with the 8-azidoadenine analogues. These peptides and an additional peptide corresponding to positions I110-K123 were photolabeled with 2-N3ADP. Since I110-K123 was photolabeled by 2-N3ADP but not by 8-N3Ap4A, it was assigned to the AMP binding domain.  相似文献   

9.
Dark-adapted pure bovine rod outer segments (ROS) (A280/A500--2.1) can be phosphorylated in the presence of [gamma-32P]ATP and [gamma-32P]GTP. The constant levels of phosphorylation, reached within 10--15 min, are 100 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP and 2--4 pmol 32P/nmol of rhodopsin for [gamma-32P]GTP. These processes are not controlled by 10(-4)--10(-8) cAMP, cGMP or Ca2+, but are inhibited at higher concentrations of these agents. In the presence of histone the constant level of phosphorylation is increased up to 200 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP, but is not changed when [gamma-32P]GTP is used. 10(-5) M cAMP is found to activate the phosphorylation in the presence of histone and [gamma-32P]ATP by 5--6 times. All this evidences that ROS contains cAMP-dependent protein kinase, which utilizes ATP, but not GTP. Moreover, ROS contains cyclic nucleotides- and Ca2+-independent protein kinase. These protein kinases are the ROS endogenous enzymes. This is shown in experiments on separation of pure ROS in a sucrose density gradient.  相似文献   

10.
Terminal deoxynucleotidyltransferase is the only DNA polymerase that is strongly inhibited in the presence of ATP. We have labeled calf terminal deoxynucleotidyltransferase with [32P]ATP in order to identify its binding site in terminal deoxynucleotidyltransferase. The specificity of ATP cross-linking to terminal deoxynucleotidyltransferase is shown by the competitive inhibition of the overall cross-linking reaction by deoxynucleoside triphosphates, as well as the ATP analogs Ap4A and Ap5A. Tryptic peptide mapping of [32P]ATP-labeled enzyme revealed a peptide fraction that contained the majority of cross-linked ATP. The properties, chromatographic characteristics, amino acid composition, and sequence analysis of this peptide fraction were identical with those found associated with dTTP cross-linked terminal deoxynucleotidyl-transferase peptide (Pandey, V. N., and Modak, M. J. (1988a). J. Biol. Chem. 263, 3744-3751). The involvement of the same 2 cysteine residues in the crosslinking of both nucleotides further confirmed the unity of the ATP and dTTP binding domain that contains residues 224-237 in the primary amino acid sequence of calf terminal deoxynucleotidyltransferase.  相似文献   

11.
S S David  B E Haley 《Biochemistry》1999,38(26):8492-8500
Creatine kinase (CK) will autoincorporate radiolabel from [gamma32P]ATP and has thus been reported to be autophosphorylated. Also, in contrast to normal brain enzyme, CK in Alzheimer-diseased brain homogenate shows greatly decreased activity, abolished photolabeling with [32P]8N3ATP, and no detectable autoincorporation of radiolabel by [gamma32P]ATP. Surprisingly, our studies with both human brain and purified CK showed that [alpha32P]ATP, [gamma32P]ATP, [alpha32P]ADP, [2,8H3]ATP, [gamma32P]2',3'-O-(2,4, 6-trinitrophenyl)-ATP, and [gamma32P]benzophenone-gammaATP all autoincorporate radiolabel into CK with good efficiency. This demonstrates that the gamma-phosphate and the 2' and 3' hydroxyls are not involved in the covalent linkage and that all three phosphates, the ribose and base of the ATP molecule are retained upon autoincorporation (nucleotidylation). Treatment with NaIO3 to break the 2'-3' linkage effected total loss of radiolabel indicating that nucleotidylation resulted in opening of the ribose ring at the C1' position. Nucleotidylation with increasing [alpha32P]ATP at 37 degrees C gives an approximate k0.5 of 125 microM and saturates at 340 microM nucleotide. Modification of 8-10% of the copy numbers occurs at saturation, and CK activity is inhibited to approximately the same degree. Low micromolar levels of native substrates such as ADP, ATP, and phosphocreatine substantially reduce [alpha32P]ATP nucleotidylation. In contrast, AMP, GTP, GMP, NADH, and creatine did not effectively reduce nucleotidylation. When [alpha32P]ATP-nucleotidylated or [alpha32P]8N3ATP-photolabeled CK is treated with trypsin a single, identical radiolabeled peptide (V279-R291) is generated that comigrates on reverse phase HPLC and Tris-tricine electrophoresis. Nucleotidylation into this peptide was prevented 86% by the presence of ATP. We conclude that CK is nucleotidylated within the active site by modification at the C1'position and that autophosphorylation of this enzyme does not occur.  相似文献   

12.
Phosphofructokinase-1 plays a key role in the regulation of carbohydrate metabolism. Its activity can be used as an indicator of the glycolytic flux in a tissue sample. The method most commonly employed to determine phosphofructokinase-1 activity is based on oxidation of NADH by the use of aldolase, triosephosphate isomerase, and alpha-glycerophosphate dehydrogenase. This method suffers from several disadvantages, including interactions of the auxiliary enzymes with phosphofructokinase-1. Other methods that have been used also require auxiliary enzymes or are less sensitive than a coupled assay. Here, we propose a direct method to determine phosphofructokinase-1 activity, without the use of auxiliary enzymes. This method employs fructose-6-phosphate and ATP labeled with 32P in the gamma position ([gamma-32P]ATP), and leads to the formation of ADP and fructose-1,6-bisphosphate labeled with 32P ([1-32P]fructose-1,6-bisphosphate). Activated charcoal is used to adsorb unreacted [gamma-32P]ATP, and the radioactive product in the supernatant, [1-32P]fructose-1,6-bisphosphate, is analyzed on a liquid scintillation counter. The proposed method is precise and relatively inexpensive, and can be applied to determine phosphofructokinase-1 activity in cellular extracts as well as in the purified enzyme.  相似文献   

13.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

14.
This study is concerned with Na/K pump-mediated phosphate efflux that occurs during uncoupled Na efflux in human red blood cells. Uncoupled Na efflux is known to be a ouabain-sensitive mode of the Na/K pump that occurs in the absence of external Nao and Ko. Because this efflux (measured with 22Na) is also inhibited by 5 mM Nao, the efflux can be separated into a Nao-sensitive and a Nao-insensitive component. Previous work established that the Nao-sensitive efflux is actually comprised of an electroneutral coefflux of Na with cellular anions, such as SO4 (as 35SO4). The present work focuses on the Nao-insensitive component in which the principal finding is that orthophosphate (P(i)) is coeffluxed with Na in a ouabain-sensitive manner. This P(i) efflux can be seen to occur, in the absence of Ko, in both DIDS-treated intact cells and resealed red cell ghosts. This efflux of P(i) was shown to be derived directly from the pump's substrate, ATP, by the use of resealed ghosts made to contain both ATP and P(i) in which either the ATP or the P(i) were labeled with, respectively, [gamma-32P]ATP or [32P]H3PO4. (These resealed ghosts also contained Na, Mg, P(i), SO4, Ap5A, as well as an arginine kinase/creatine kinase nucleotide regenerating system for the control of ATP and ADP concentrations, and were suspended usually in (NMG)2SO4 at pH 7.4.) It was found that 32P was only coeffluxed with Na when the 32P was contained in [gamma-32P]ATP and not in [32P]H3PO4. This result implies that the 32P that is released comes from ATP via the pump's phosphointermediate (EP) without commingling with the cellular pool of P(i). Ko (as K2SO4) inhibits this 32P efflux as well as the Nao-sensitive 35SO4 efflux, with a K0.5 of 0.3-0.4 mM. The K0.5 for inhibition of P(i) efflux by Ko is not influenced by Nao, nor can Nao act as a congenor for Ko in any of the flux reactions involving Ko. The stoichiometry of Na to SO4 and Na to P(i) efflux is approximately 2:1 under circumstances where the stoichiometry of Na effluxed to ATP utilized is 3:1. From these and other results reported, it is suggested that there are two types of uncoupled Na efflux that differ from each other on the basis of their sensitivity to Nao, the source (cellular vs substrate) and kind of anion (SO4 vs P(i)) transported.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
1. Conditions for binding of [gamma-32P]ATP to bovine brain Na+,K+-stimulated ATPase were investigated by the indirect technique of measuring the initial rate of 32P-labelling of the active site of the enzyme. 2. At 100 muM [gamma-32P]ATP in the presence of 3 mM MgCl2, approximately the same very high rate of formation of [32P]phosphoenzyme was obtained irrespective of whether [gamma-32P]ATP was added to the enzyme simultaneously with, or 70 ms in advance of the addition of NaCl. A comparatively slow rate of phosphorylation was obtained at 5 muM[gamma-32P]ATP without preincubation. However, on preincubation of the enzyme with 5 muM[gamma-32P]ATP a rate of formation of [32P]phosphoenzyme almost as rapid as at 100 muM[gamma-32P]ATP was observed. 3. A transient [32P]phosphoenzyme was discovered. It appeared in the presence of K+, under conditions which allowed extensive binding of [gamma-32P]-ATP. The amount of [gamma-32P]ATP that could be bound to the enzyme seemed to equal the amount of [32P] phosphorylatable sites. 4. The formation of the transient [32P] phosphoenzyme was inhibited by ADP. The transient [32P] phosphoenzyme was concluded mainly to represent the K+-insensitive and ADP-sensitive E1-32P. 5. When KCl was present in the enzyme solution before the addition of NaCl only a comparatively slow rate of phosphorylation was observed. On preincubation of the enzyme with [gamma-32]ATP an increase in the rate of formation of [32P] phosphoenzyme was obtained, but there was no transient [32P]-phosphoenzyme. The transient [32P]phosphoenzyme was, however, detected when the enzyme solution contained NaCl in addition to KCl and the phosphorylation was started by the addition of [gamma-32P]ATP.  相似文献   

16.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

17.
We employed the photoaffinity probe 8-azido-adenosine 5'-triphosphate (aATP) to identify the nuclear envelope (NE) nucleosidetriphosphatase activity (NTPase) implicated in control of RNA transport. The photoprobe was hydrolyzed at rates comparable to those for ATP, with a Michaelis constant of 0.225 mM. Photolabeling was dependent upon UV irradiation (300-nm max) and was not affected by quercetin. Unlabeled ATP or GTP competed with [32P]aATP in photolabeling experiments, and UTP was a less effective competitor, paralleling the substrate specificity of the NTPase. Incubation of NE with aATP led to a UV, time, and concentration dependent irreversible inactivation of NTPase. The inactivation could be blocked by ATP or GTP. Polyacrylamide gel electrophoresis and autoradiography of photolabeled NE showed selective, UV-dependent labeling of a 46-kDa protein with both [gamma-32P]aATP and [alpha-32P]aATP. This band was not labeled with [gamma-32P]ATP. Since the NE NTPase implicated in RNA transport is modulated by RNA, we examined the effects of RNA on the labeling process. Removal of RNA from the NE preparations (by RNase/DNase digestion) reduced NTPase by 30-40% and eliminated photolabeling of the 46-kDa band. Addition of yeast RNA to such preparations increased NTPase activity to control levels and selectively reinstated photolabeling of the 46-kDa band. These results suggest that the 46-kDa protein represents the major NTPase implicated in RNA transport.  相似文献   

18.
2-Azido[alpha-32P]adenosine diphosphate (2-azido[alpha-32P]ADP) has been used to photolabel the ADP/ATP carrier in beef heart mitochondria. In reversible binding assays carried out in the dark, this photoprobe was found to inhibit ADP/ATP transport in beef heart mitochondria and to bind to two types of specific sites of the ADP/ATP carrier characterized by high-affinity binding (Kd = 20 microM) and low-affinity binding (Kd = 400 microM). In contrast, it was unable to bind to specific carrier sites in inverted submitochondrial particles. Upon photoirradiation of beef heart mitochondria in the presence of 2-azido[alpha-32P]ADP, the ADP/ATP carrier was covalently labeled. After purification, the photolabeled carrier protein was cleaved chemically by acidolysis or cyanogen bromide and enzymatically with the Staphylococcus aureus V8 protease. In the ADP/ATP carrier protein, which is 297 amino acid residues in length, two discrete regions extending from Phe-153 to Met-200 and from Tyr-250 to Met-281 were labeled by 2-azido[alpha-32P]ADP. The peptide fragments corresponding to these regions were sequenced, and the labeled amino acids were identified. As 2-azido-ADP is not transported into mitochondria and competes against transport of externally added ADP, it is concluded that the two regions of the carrier which are photolabeled are facing the cytosol. Whether the two photolabeled regions are located in a single peptide chain of the carrier or in different peptide chains of an oligomeric structure is discussed.  相似文献   

19.
An ATPase/dATPase activity found associated with the nuclear matrix-pore complex-lamina fraction isolated from embryos of Drosophila melanogaster has been characterized. In the presence of either Ca2+ or Mg2+, this activity hydrolyzed either ATP or dATP to ADP or dADP, respectively, and Pi. Hydrolysis was optimal from pH 6.5-7.2, did not require either Na+ or K+, and was not significantly inhibited by NaF, ouabain, quercetin, Na3VO4, CTP, or GTP. In contrast, hydrolysis was inhibited by N-ethylmaleimide, EDTA, and cordycepin 5'-triphosphate. In all respects tested, hydrolysis of ATP was indistinguishable from that of dATP and when incubated in the same reaction mixture, each was linearly competitive with the other. Based upon these properties, a series of direct UV photoaffinity labeling experiments was performed. Using alpha-[32P]dATP, alpha-[32P]ATP, or gamma-[32P]ATP, only a single polypeptide (Mr approximately 174,000) was photolabeled in a manner completely consistent with the enzymology of ATP and dATP hydrolysis; cell fractionation studies revealed a predominantly or exclusively nuclear localization. A polypeptide with virtually the identical mobility on sodium dodecyl sulfate-polyacrylamide gels was similarly identified as the major photolabeled species in nuclear envelope fractions obtained from chickens, opossums, rats, and guinea pigs. Thus, it seems probable that this 174-kilodalton polypeptide constitutes at least the active site-containing subunit of the major insoluble ATPase/dATPase found in structural protein subfractions prepared from higher invertebrate as well as vertebrate nuclei.  相似文献   

20.
A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [32P]orthophosphate from [gamma-32P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-32P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [32P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-32P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10(4)-fold excess of NAD over NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号