首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The budding yeast Saccharomyces cerevisiae has two HSP90-related genes per haploid genome, HSP82 and HSC82. Random mutations were induced in vitro in the HSP82 gene by treatment of the plasmid with hydroxylamine. Four temperature-sensitive (ts) mutants and one simultaneously is and cold-sensitivie (cs) mutant were then selected in a yeast strain in which HSC82 had previously been disrupted. The mutants were found to have single base changes in the coding region, which caused single amino acid substitutions in the HSP82 protein. All of these mutations occurred in amino acid residues that are well conserved among HSP90-related proteins of various species from Escherichia coli to human. Various properties including cell morphology, macromolecular syntheses and thermosensitivity were examined in each mutant at both the permissive and nonpermissive temperatures. The mutations in HSP82 caused pleiotropic effects on these properties although the phenotypes exhibited at the nonpermissive temperature varied among the mutants.  相似文献   

2.
Summary Several conditional lethal mutants of Escherichia coli have been analysed genetically using generalized transduction and lambda transducing vectors. Three temperature-sensitive ftsE mutants were found as was a cold-sensitive ftsE mutant. A new gene was foud which mapped close to ftsE, namely ftsS. Both cell division genes map close to the gene which controls the heat-shock regulon (htpR).  相似文献   

3.
TheGNOM gene is required for pattern formation along the main body axis of the embryo in the flowering plantArabidopsis thaliana. Mutations in theGNOM gene alter the asymmetric division of the zygote and interfere with the formation of distinct apical-basal regions in the developing embryo. We have isolated theGNOM gene by positional cloning, characterised its structure and determined the molecular lesions in mutant alleles. Although the predicted 163 kDa GNOM protein has a conserved domain in common with the yeast secretory protein Sec7p, it is most closely related in size and overall similarity to the product of the yeastYEC2 gene, which is not essential for cell viability. Four fully complementinggnom alleles carry missense mutations in conserved regions, seven partially complementing alleles have premature stop codon mutations and two non-complementing alleles have splice-site lesions. Our results suggest that the GNOM protein acts as a complex of identical subunits and that partial complementation may involve low levels of full-length protein generated by inefficient translational read-through.Communicated by H. Saedler  相似文献   

4.
Arabidopsis var1 and var2 mutants exhibit leaf variegation. VAR1 and VAR2 encode similar FtsH metalloproteases (FtsH5 and FtsH2, respectively). We have previously found many variegated mutants to be allelic to var2. Each mutant was shown to express a different degree of variegation, and the formation of white sectors was enhanced in severely variegated alleles when these alleles were grown at low temperature. VAR1/FtsH5 and VAR2/FtsH2 levels were mutually affected even in the weak alleles, confirming our previous observation that the two proteins form a hetero complex. In this study, the sites of the mutations in these var2 alleles were determined. We isolated eight point mutations. Five alleles resulted in an amino acid substitution. Three of the five amino acid substitutions occurred in Walker A and B motifs of the ATP-binding site, and one occurred in the central pore motif. These mutations were considered to profoundly suppress the ATPase and protease activities. In contrast, one mutation was found in a region that contained no obvious signature motifs, but a neighboring sequence, Gly–Ala–Asp, was highly conserved among the members of the AAA protein family. Site-directed mutagenesis of the corresponding residue in E. coli FtsH indeed showed that this residue is necessary for proper ATP hydrolysis and proteolysis. Based on these results, we propose that the conserved Gly–Ala–Asp motif plays an important role in FtsH activity. Thus, characterization of the var2 alleles could help to identify the physiologically important domain of FtsH.  相似文献   

5.
ThePLC1 gene of the yeastSaccharomyces cerevisiae has been discovered to encode a homolog of mammalian phosphoinositide-specific phospholipase C (PLC). Five temperature-sensitiveplc1 mutants were isolated by in vitro mutagenesis with subsequent plasmid shuffling. All of the amino acid substitutions that caused a temperature-sensitive growth phenotype were located in the X or the Y region, both of which are conserved among PLC isoenzymes. The PLC activity of all products of mutantplc1 genes was dramatically lower than that of the wild-type product, indicating that PLC activity itself is important for cell growth. At the restrictive temperature,plc1 mutant cells ceased growth at random times during the cell cycle, a result that suggests thatPLC1 is required at several or all stages of the cell cycle.  相似文献   

6.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

7.
Summary The cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a 34 kDa phosphoprotein with serine/threonine protein kinase activity that acts as the key component in regulation of the eukaryotic cell cycle. We used a repressible promoter fused to the cdc2 cDNA to isolate conditionally dominant negative mutants of cdc2. One of these mutants, DL5, is described in this paper. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and confers cell cycle arrest with a typical cdc phenotype. Sequencing of the mutant cdc2 gene revealed a single amino acid substitution in a region highly conserved in cdc2-like proteins. The mutant protein exhibits no protein kinase activity, but is able to bind a component(s) required for an active protein kinase complex and thereby prevents binding of this component(s) to the co-existing wild-type cdc2 protein. We also demonstrate that S. pombe p34cdc2 contains no phosphoserine.  相似文献   

8.
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.  相似文献   

9.
We isolated 607 independent nalidixic acid-resistant mutants from Bacillus subtilis. A 163 by DNA segment from a 5 portion of the gyrA gene was amplified from the DNA of each mutant strain. After heat denaturation, the product was subjected to gel electrophoresis to detect conformational polymorphism of single-strand DNA (PCR-SSCP analysis). Mobility patterns of the two DNA strands from all the mutant strains examined differed from those of the parental wild-type strains. The patterns were classified into 13 types, and the DNA sequence of each type was determined. A unique sequence alteration was found in mutants belonging to each of the 13 types, defining 13 gyrA alleles. Eight were single base pair substitutions, four were substitutions of two consecutive base pairs, and one was a substitution of three consecutive base pairs. Only three amino acid residues (Ser-84, Ala-85, and Glu-88) were altered in the deduced amino acid sequences of the mutated genes. We conclude that molecular typing based on the PCR-SSCP method is a powerful technique for the exhaustive identification of allelic variants among mutants selected for a phenotypic trait.  相似文献   

10.
Summary The cell division genes ftsY, ftsE and ftsX form an operon mapping at 76 min on the Escherichia coli chromosome. The protein products of these genes have been indentified previously. We have studied the cellular location of the radiolabelled Fts proteins using maxicells and standard fractionation procedures. Previous protein sequence homologies suggested an inner membrane location for FtsE. We have confirmed this predicted location and have shown that FtsY and FtsX are also inner membrane-associated. These results are igreement with the hypothesis that FtsE may act at the inner membrane, in a septalsome complex, by coupling ATP hydrolysis to the process of bacterial cell division.  相似文献   

11.
The unorthodox two-component sensor protein BvgS ofBordetella pertussis contains several interesting sequence motifs of unknown functional relevance, such as a histidine motif in its output domain, which is conserved among several unorthodox sensor proteins, a putative nucleotide binding site [Walker box type A] in its linker region, and a region in its periplasmic domain with significant homology to the TonB protein ofEscherichia coli. We investigated potential functions of these sequences by constructingB. pertussis strains that express mutant BvgS derivatives. The His1172 residue in the output domain was exchanged for Gln, and the Walker motif was mutated either by the replacement of Lys625 by Arg, or of Gly624 by Val and Lys625 by Leu. To analyse the TonB motif, the periplasmic domain of BvgS was replaced with the corresponding domain of EvgS, anE. coli sensor that is highly homologous to BvgS but lacks the similarity with TonB. All mutations except the conservative Lys/Arg exchange in the Walker box caused the inactivation of BvgS, indicating the functional importance of the conserved motifs. The activity of the mutant proteins could be restored by complementation in trans with various separately expressed, truncated parts of BvgS. Mutations in the BvgS receiver domain could be complemented not only by a construct expressing the wild-type receiver and output domains, but also by the derivative containing the His-Gln exchange. Therefore, the histidine motif, although important for BvgS function, is not essential for complementation of BvgS mutants. The mutations in the Walker box and in the periplasmic domain could be complemented by a truncated BvgS derivative lacking the receiver and output domains. The characterization of a spontaneous revertant of the strain expressing the originally inactive EvgS/BvgS hybrid protein revealed the presence of a mutation in the BvgS linker region, conferring constitutive activity on the protein. As TonB energizes transport processes across the outer membrane ofE. coli, the strain expressing the constitutive EvgS/BvgS hybrid protein lacking the TonB motif was used in preliminary investigations of a possible direct involvement of BvgS in transport processes.  相似文献   

12.
Summary The products of the chromosomally encoded umuDC genes are directly required for mutagenesis in Escherichia coli. Strains with either umuD or umuC mutations are rendered phenotypically non-mutable. To ascertain the molecular basis of this non-mutability, we determined the DNA sequence alterations of seven chromosomal umuDC mutants. Six mutants (umuD1, umuD44, umuD77, umuC36, umuC25, and umuC104) were found to be single base-pair substitutions that resulted in missense mutations. The Tn5 transposon insertion mutation (umuC122) resulted in a missense mutation followed immediately by a termination codon, producing a truncated UmuC protein lacking 102 carboxyl-terminal amino acids. All of the mutations were found to reside in regions of the UmuD and UmuC proteins that share high homology with analogous proteins. Chemiluminescent immunoassays revealed that the umuD1, umuD44, and umuD77 mutations all resulted in a non-cleavable UmuD protein. Because UmuD cleavage is a prerequisite for mutagenesis, the lack of UmuD processing appears to be the molecular basis for the non-mutable phenotype in these strains. These studies re-emphasize the critical nature of the RecA-mediated cleavage of UmuD for inducible mutagenesis and provide insights into the functional domains of the UmuC protein.  相似文献   

13.
Protein phosphatase M family (PPM; Mg2+-dependent protein phosphatases), which specifically dephosphorylates serine/threonine residues, consists of pyruvate dehydrogenase phosphatases, SpoIIE, adenylate cyclase and protein phosphatase type 2Cs (PP2Cs). To identify Candida albicans PP2Cs, the archetype of the PPM Ser/Thr phosphatases, we thoroughly searched the public C. albicans genome database and identified seven PP2C members. One of the PP2Cs in C. albicans, designated as CaPTC8 gene, represents a new member of PP2C genes. Northern blot analysis showed that the expression of CaPTC8 was positively responsive to high osmolarity, temperature or serum-stimulated filamentous growth. Gene disruption further demonstrated that deletion of CaPTC8 gene caused the defect of hyphal formation. Sequence analysis revealed that two conserved amino acids His and Asn in the prototypical members of the PPM family were substituted by Val and Asp in the PTC8p-like proteins. In addition, posterior analysis for site-specific profile showed that seven more sites are under the selection of functional divergence between these two groups of proteins. Three-dimensional homology modeling illustrated the signatures of the two groups in the conserved catalytic region of the protein phosphatases. Hence, CaPTC8 plays a role in stress responses and is required for the yeast-hyphal transition, and the CaPTC8-related genes are evolutionarily conserved. The phylogenetic relationships of all members of the PPM family strongly support the existence of a distinct and new subfamily of the PP2C-related proteins, PP2CR.  相似文献   

14.
The Cbf5 protein of Saccharomyces cerevisiae was originally identified as a low-affinity centromeric DNA-binding protein, and cbf5 mutants have a defect in rRNA synthesis. A closely related protein from mammals, NAP57, is a nucleolar protein that coimmunoprecipitates with the nucleolar phosphoprotein Nopp140. To study the function of this protein family in a higher eukaryote that is amenable to genetic approaches, the gene encoding a Drosophilamelanogaster homolog, Nop60B, was identified. The predicted Drosophila protein shares a high degree of sequence identity over a 380-residue region with both the mammalian and yeast proteins, and shares several conserved motifs with the prokaryotic tRNA pseudouridine 55 synthases. Nop60B RNA is found at high levels in nurse cells and in the oocyte, and is present throughout development. Nop60B protein is localized primarily to the nucleolus of interphase cells, and is absent from the chromosomes during mitosis. Nop60B mutants were generated and shown to be homozygous lethal. The Drosophila gene can rescue the lethal phenotype of yeast cbf5 mutations, showing that the function of this protein has been conserved from yeast to Drosophila. Received: 23 February 1998 / Accepted: 17 June 1998  相似文献   

15.
16.
Nitrate reductase of Neurospora crassa is a dimeric protein composed of two identical subunits, each possessing three separate domains, with flavin, heme, and molybdenum-containing cofactors. A number of mutants of nit-3, the structural gene that encodes Neurospora nitrate reductase, have been characterized at the molecular level. Amber nonsense mutants of nit-3 were found to possess a truncated protein detected by a specific antibody, whereas Ssu-1-suppressed nonsense mutants showed restoration of the wild-type, full-length nitrate reductase monomer. The mutants show constitutive expression of the truncated nitrate reductase protein; however normal control, which requires nitrate induction, was restored in the suppressed mutant strains. Three conventional nit-3 mutants were isolated by the polymerase chain reaction and sequenced; two of these mutants were due to the deletion of a single base in the coding region for the flavin domain, the third mutant was a nonsense mutation within the amino-terminal molybdenum-containing domain. Homologous recombination was shown to occur when a deleted nit-3 gene was introduced by transformation into a host strain with a single point mutation in the resident nit-3 gene. New, severely damaged, null nit-3 mutants were created by repeat-induced point mutation and demonstrated to be useful as host strains for transformation experiments.  相似文献   

17.
18.
We have determined the nucleotide sequence of a 3.5 kb segment in the recF region of the Staphylococcus aureus chromosome. The gene order at this locus, dnaA-dnaN-recF-gyrB is similar to that found in the replication origin region of many other bacteria. S. aureus RecF protein (predicted molecular mass 42.3 kDa), has 57% amino acid sequence identity with the Bacillus subtilis RecF protein (42.2 kDa), but only 26% with the Escherichia coli RecF protein (40.5 kDa). We have shown that the S. aureus recF gene partially complements the defect of a B. subtilis recF mutant, but does not complement an E. coli recF strain. The amino acid sequence alignment of seven available RecF proteins (five of them from bacteria of gram-negative origin) allowed us to identify eight highly conserved regions ( to ) and to predict five new conserved regions within the gram-positive group (a to f). We suggest that the basic mechanism of homologous recombination is conserved among free-living bacteria.  相似文献   

19.
Summary Several genes of the achaete-scute complex (ASC) of Drosophila melanogaster encode a 60 amino acids long conserved domain which shares a significant homology with a region of the vertebrate myc proteins. Based on these results, the existence of a family of Drosophila genes that would share both this conserved domain and the neurogenic function of the AS-C has been postulated. To test this proposal, we have searched a D. melanogaster genomic library with a probe that encodes the conserved domain. Only under very low stringency hybridization conditions, clones not belonging to the AS-C cross-hybridized with the probe. Those that gave the strongest signals were characterized. Sequencing of the cross-hybridizing regions showed that they had no significant homology with the conserved domain, the sequence similarity extending at the most for 37 nucleotides. Although our results do not conclusively disprove the existence of a family of AS-C-like genes, they indicate that the conservation of the domain would be lower than that found for shared motifs in other families of Drosophila developmental genes.  相似文献   

20.
Summary The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号