首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In addition to the ethylene formed at the onset of tomato fruit ripening, three peaks of ethylene are produced during earlier periods of in vitro development of tomato flower to fruit. This is the first report characterizing ethylene production during early development of tomato fruit. Previous reports from this laboratory showed that VFNT Cherry tomato calyces are transformed into fruit tissue when cultured in vitro at lower temperatures (16–23 °C). Early ethylene production was also measured in these ripening calyces, as well as in fruit and calyces of other tomato cultivars cultured in vitro. Calyces from Ailsa Craig and rin tomato flowers, which are not transformed into fruit tissue at these lower temperatures, also form ethylene during early periods of in vitro culture, but to a much smaller extent. Unlike ethylene formed at the onset of fruit ripening, the earlier peaks are resistant to the inhibitors, aminovinylglycine (AVG) and CoCl2. The data suggest that ethylene produced during earlier periods of tomato fruit development is formed by an alternative biosynthetic pathway.  相似文献   

3.
4.
Cultivated tomatoes (Lycopersicon esculen- tum) encompass a wide range of fruit size and shape variants. This variation provides the basis for dissecting the genetic and molecular pathways of ovary and fruit development. One fruit shape variant is displayed by the cultivar Sun 1642 (TA491). TA491 has an elongated fruit phenotype, while the wild relative L. pimpinellifolium LA1589 produces fruit that are nearly perfect spheres, a shape typical of wild tomatoes. Developmental studies indicated that the differences in fruit shape between TA491 and LA1589 are determined by events occurring immediately after pollination and extending to 14 days post-pollination. Quantitative trait mapping revealed a single major locus on chromosome 7 (named sun) to be responsible for the differential development of TA491 and LA1589 fruit. Other fruit shape loci characterized in tomato (e.g. fs8.1 and ovate) exert their effects before anthesis and early in ovary development. sun is the first major locus identified in tomato controlling fruit shape through post-pollination events. Received: 17 November 2000 / Accepted: 24 November 2000  相似文献   

5.
6.
Control and manipulation of gene expression during tomato fruit ripening   总被引:8,自引:0,他引:8  
Ripening is a complex developmental process involving changes in the biochemistry, physiology and gene expression of the fruit. It is an active process characterised by changes in all cellular compartments. cDNA cloning has been used as an approach to analyse changes in gene expression during fruit ripening. This has revealed that several genes are switched on specifically during fruit ripening, including one encoding polygalacturonase (PG), a major cell wall protein. These cDNA clones have been used to study the expression of the genes in normal and ripening mutant fruits, and under environmental stress conditions.The PG gene has been isolated and it has been demonstrated that 1450 bases 5 of the coding region are sufficient for the tissue- and development-specific expression of a bacterial marker gene in transgenic tomatoes. Antisense RNA techniques have been developed to generate novel mutant tomatoes in which the biochemical function of this enzyme and its involvement in fruit softening has been tested.  相似文献   

7.
Farnesyl pyrophosphate synthase (FPS) catalyzes the synthesis of farnesyl pyrophosphate, a key intermediate in sterol and sesquiterpene biosynthesis. Using a polymerase chain reaction-based approach, we have characterized LeFPS1, a tomato (Lycoperscion esculentum cv Wva 106) fruit cDNA, which encodes a functional FPS. We demonstrate that tomato FPSs are encoded by a small multigenic family with genes located on chromosomes 10 and 12. Consistent with farnesyl pyrophosphate requirement in sterol biosynthesis, FPS genes are ubiquitously expressed in tomato plants. Using an LeFPS1 specific probe, we show that the corresponding gene can account for most of FPS mRNA in most plant organs, but not during young seedling development, indicating a differential regulation of FPS genes in tomato. FPS gene expression is also under strict developmental control: FPS mRNA was mainly abundant in young organs and decreased as organs matured with the exception of fruits that presented a biphasic accumulation pattern. In this latter case in situ hybridization studies have shown that FPS mRNA is similarly abundant in all tissues of young fruit. Taken together our results suggest that several FPS isoforms are involved in tomato farnesyl pyrophosphate metabolism and that FPS genes are mostly expressed in relation to cell division and enlargement.  相似文献   

8.
9.
Dumville JC  Fry SC 《Planta》2003,216(3):484-495
Two neutral disaccharides, gentiobiose [beta- D-Glc p-(1-->6)- D-Glc] and nigerose [alpha- D-Glc p-(1-->3)- D-Glc], were detected in tomato ( Lycopersicon esculentum Mill.) pericarp and locule. Gentiobiose was present in the locule of green fruit and ripe fruit at 0.88 and 5.8 micro mol (kg fresh weight)(-1), respectively. When vacuum-infiltrated into green tomato fruit, exogenous gentiobiose (50 or 200 micro g per fruit) hastened the initiation of ripening (as judged by colour change) by 1-3 days relative to fruit that were infiltrated with glucose or isomaltose. Nigerose plus gentiobiose was particularly effective, but nigerose alone had no significant effect. The endogenous disaccharides were found to be present in the apoplastic fluid of the fruit, compatible with a proposed intercellular signalling role. The origin and metabolic fate of the disaccharides were investigated. Phenolic esters of these disaccharides were not detectable in tomato fruit and it is therefore unlikely that the free disaccharides were formed from a pool of such esters. An alternative possible biosynthetic origin, via transglycosylation, is discussed. When [(14)C]gentiobiose was vacuum-infiltrated into unripe or ripe fruit, the disaccharide remained intact for at least 1 h but was largely degraded within 24 h. The results suggest that gentiobiose is a new, naturally occurring oligosaccharin with a rapid turnover rate.  相似文献   

10.
11.
Mutant alleles at the suffulta locus of tomato dramatically affect the pattern of plastid division throughout the plant, resulting in few, greatly enlarged chloroplasts in leaf and stem cells. suffulta plants are compromised in growth and have distinctly pale stems. The green developing tomato fruit are generally paler compared with the wild type, but ripe red fruit are much more similar in colour and pigment content. By using plastid-targeted green fluorescent protein, the underlying plastid phenotypes in the ripening suffulta fruit reveal that enlarged chlorophyll-containing chloroplasts degenerate and give rise to a wild type-like population of chromoplasts in ripe fruit by a process of plastid budding and fragmentation, resulting in a heterogeneous population of plastid-derived structures which eventually become chromoplasts. In stomatal guard cells, plastid-derived structures lacking chlorophyll, but containing GFP, are also observed, especially in guard cells which completely lack normal chloroplasts. How this novel 'replication' process in suffulta relates to conventional plastid division and stromule formation is discussed.  相似文献   

12.
13.
14.
15.
Water relations of the tomato during fruit growth   总被引:10,自引:5,他引:5  
Fruit and stem water potentials of tomato plants were measured continuously for several days using automated psychrometers. A linear voltage displacement transducer was used to simultaneously measure diameter changes on an adjacent fruit. A strong correlation was observed between the water potential gradient of the fruit and stem, and changes in fruit diameter. Fruit diameter increased when the apoplasmic water potential gradient favoured solution flow into the fruit and fruit shrinkage occurred only when the water potential gradient was inverted. Based on our data and other published data (Ehret & Ho 1986; Lee 1989a) on phloem transport in tomato, we have concluded that low stem water potentials have an immediate and direct effect on phloem turgor; reducing the driving force for sap flow into the fruit. Since fruit water potential remained relatively constant, the diurnal variation in stem water potential was sufficient to account for the correlation with changes in fruit diameter. There are consequences with respect to predicting the accumulation of dry matter in tomato fruit.  相似文献   

16.
An expansin gene, LeExp2, was isolated from auxin-treated, etiolated tomato (Lycopersicon esculentum cv T5) hypocotyls. LeExp2 mRNA expression was restricted to the growing regions of the tomato hypocotyl and was up-regulated during incubation of hypocotyl segments with auxin. The pattern of expression of LeExp2 was also studied during tomato fruit growth, a developmental process involving rapid cell enlargement. The expression of genes encoding a xyloglucan endotransglycosylase (LeEXT1) and an endo-1, 4-beta-glucanase (Cel7), which, like LeExp2, are auxin-regulated in etiolated hypocotyls (C. Catalá, J.K.C. Rose, A.B. Bennett [1997] Plant J 12: 417-426), was also studied to examine the potential for synergistic action with expansins. LeExp2 and LeEXT1 genes were coordinately regulated, with their mRNA accumulation peaking during the stages of highest growth, while Cel7 mRNA abundance increased and remained constant during later stages of fruit growth. The expression of LeExp2, LeEXT1, and Cel7 was undetectable or negligible at the onset of and during fruit ripening, which is consistent with a specific role of these genes in regulating cell wall loosening during fruit growth, not in ripening-associated cell wall disassembly.  相似文献   

17.

Background  

Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted.  相似文献   

18.
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants in which expression of the LeNCED1 coding region is under tetracycline-inducible control. When leaf explants from these plants were treated with tetracycline, NCED mRNA was induced and bulk leaf ABA content increased by up to 10-fold. Transgenic tomato plants were also produced containing the LeNCED1 coding region under the control of one of two strong constitutive promoters, either the doubly enhanced CaMV 35S promoter or the chimaeric 'Super-Promoter'. Many of these plants were wilty, suggesting co-suppression of endogenous gene activity; however three transformants displayed a common, heritable phenotype that could be due to enhanced ABA biosynthesis, showing increased guttation and seed dormancy. Progeny from two of these transformants were further characterized, and it was shown that they also exhibited reduced stomatal conductance, increased NCED mRNA and elevated seed ABA content. Progeny of one transformant had significantly higher bulk leaf ABA content compared to the wild type. The increased seed dormancy was reversed by addition of the carotenoid biosynthesis inhibitor norflurazon. These data provide strong evidence that NCED is indeed a key regulatory enzyme in ABA biosynthesis in leaves, and demonstrate for the first time that plant ABA content can be increased through manipulating NCED.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号