首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 (CYP) proteins compose a highly diverse superfamily found in all domains of life. These proteins are enzymes involved in metabolism of endogenous and exogenous compounds. In vertebrates, the CYP2 family is one of the largest, most diverse and plays an important role in mammalian drug metabolism. However, there are more than 20 vertebrate CYP2 subfamilies with uncertain evolution and fairly discrete subfamily composition within vertebrate classes, hindering extrapolation of knowledge across subfamilies. To better understand CYP2 diversity, a phylogenetic analysis of 196 CYP2 protein sequences from 16 species was performed using a maximum likelihood approach and Bayesian inference. The analyses included the CYP2 compliment from human, fugu, zebrafish, stickleback, medaka, cow, and dog genomes. Additional sequences were included from rabbit, marsupial, platypus, chicken, frog, and salmonid species. Three CYP2 sequences from the tunicate Ciona intestinalis were utilized as the outgroup. Results indicate a single ancestral vertebrate CYP2 gene and monophyly of all CYP2 subfamilies. Two subfamilies (CYP2R and CYP2U) pre-date vertebrate diversification, allowing direct comparison across vertebrate classes, while all other subfamilies originated during vertebrate diversification, often within specific vertebrate lineages. Analysis of site-specific evolution indicates that some substrate recognition sites (SRS) previously proposed for CYP genes do not have elevated rates of evolution, suggesting that these regions of the protein are not necessarily important in recognition of CYP2 substrates. Type II functional divergence analysis identified multiple residues in the active site of CYP2F, CYP2A, and CYP2B proteins that have undergone radical biochemical changes and may be functionally important.  相似文献   

2.
The human ATP-binding cassette (ABC) transporters comprise a large family of membrane transport proteins and play a vital role in many cellular processes. The genes provide functions as diverse as peptide transport, cholesterol and sterol transport, bile acid, retinoid, and iron transport. In addition some ABC genes play a role as regulatory elements. Many ABC genes play a role in human genetic diseases, and several are critical drug transport proteins overexpressed in drug resistant cells. Analysis of the gene products allows the genes to be grouped into seven different subfamilies.  相似文献   

3.
4.
Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.  相似文献   

5.
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter,ABC transporter)基因家族在原核生物和真核生物中广泛存在,该家族蛋白能够利用ATP裂解产生的能量将多种底物转运到膜上,参与多种生物过程,如营养摄入、细胞解毒、脂质稳态、信号转导、病毒防御以及抗原呈递等。目前,鱼类中,只在斑马鱼、斑点叉尾鮰和鲤鱼等少数鱼类中对该基因家族进行了系统的研究,关于金鱼ABC转运蛋白基因家族的详细分析,未见报道。本研究中,我们利用三代结合二代测序技术构建的金鱼转录组参考基因集数据,鉴定出55个ABC转运蛋白基因,通过系统进化分析将它们分为8个亚家族(A^H)。即金鱼ABC转运蛋白基因是由10个ABCA、14个ABCB、13个ABCC、5个ABCD、1个ABCE、4个ABCF、7个ABCG和1个ABCH组成。同时,我们将金鱼与斑马鱼、斑点叉尾鮰和鲤鱼等物种ABC转运蛋白基因家族成员的数目进行比较分析,推测硬骨鱼类特异的第3次全基因复制(3R-WGD)和谱系特异的第4次全基因组复制(4R-WGD)对金鱼该基因家族成员数目的影响。本研究结果为金鱼ABC转运蛋白基因功能的研究提供了理论依据。  相似文献   

6.
The ATP-binding cassette (ABC) transporter genes represent the largest family of transporters and these genes are abundant in the genome of all vertebrates. Through analysis of the genome sequence databases we have characterized the full complement of ABC genes from several mammals and other vertebrates. Multiple gene duplication and deletion events were identified in ABC genes in different lineages indicating that the process of gene evolution is still ongoing. Gene duplication resulting in either gene birth or gene death plays a major role in the evolution of the vertebrate ABC genes. The understanding of this mechanism is important in the context of human health because these ABC genes are associated with human disease, involving nearly all organ systems of the body. In addition, ABC genes play an important role in the development of drug resistance in cancer cells. Future genetic, functional, and evolutionary studies of ABC transporters will provide important insight into human and animal biology.  相似文献   

7.
Cytochrome P450 family 1 (CYP1) proteins are important in a large number of toxicological processes. CYP1A and CYP1B genes are well known in mammals, but the evolutionary history of the CYP1 family as a whole is obscure; that history may provide insight into endogenous functions of CYP1 enzymes. Here, we identify CYP1-like genes in early deuterostomes (tunicates and echinoderms), and several new CYP1 genes in vertebrates (chicken, Gallus gallus and frog, Xenopus tropicalis). Profile hidden Markov models (HMMs) generated from vertebrate CYP1A and CYP1B protein sequences were used to identify 5 potential CYP1 homologs in the tunicate Ciona intestinalis genome. The C. intestinalis genes were cloned and sequenced, confirming the predicted sequences. Orthologs of 4 of these genes were found in the Ciona savignyi genome. Bayesian phylogenetic analyses group the tunicate genes in the CYP1 family, provisionally in 2 new subfamilies, CYP1E and CYP1F, which fall in the CYP1A and CYP1B/1C clades. Bayesian and maximum likelihood analyses predict functional divergence between the tunicate and vertebrate CYP1s, and regions within CYP substrate recognition sites were found to differ significantly in position-specific substitution rates between tunicates and vertebrates. Subsequently, 10 CYP1-like genes were found in the echinoderm Strongylocentrotus purpuratus (sea urchin) genome. Several of the tunicate and echinoderm CYP1-like genes are expressed during development. Canonical xenobiotic response elements are present in the upstream genomic sequences of most tunicate and sea urchin CYP1s, and both groups are predicted to possess an aryl hydrocarbon receptor (AHR), suggesting possible regulatory linkage of AHR and these CYPs. The CYP1 family has undergone multiple rounds of gene duplication followed by functional divergence, with at least one gene lost in mammals. This study provides new insight into the origin and evolution of CYP1 genes.  相似文献   

8.
Zhao Z  Thomas JH  Chen N  Sheps JA  Baillie DL 《Genetics》2007,175(3):1407-1418
ABC transporters constitute one of the largest gene families in all species. They are mostly involved in transport of substrates across membranes. We have previously demonstrated that the Caenorhabditis elegans ABC family shows poor one-to-one gene orthology with other distant model organisms. To address the evolution dynamics of this gene family among closely related species, we carried out a comparative analysis of the ABC family among the three nematode species C. elegans, C. briggsae, and C. remanei. In contrast to the previous observations, the majority of ABC genes in the three species were found in orthologous trios, including many tandemly duplicated ABC genes, indicating that the gene duplication took place before speciation. Species-specific expansions of ABC members are rare and mostly observed in subfamilies A and B. C. briggsae and C. remanei orthologous ABC genes tend to cluster on trees, with those of C. elegans as an outgroup, consistent with their proposed species phylogeny. Comparison of intron/exon structures of the highly conserved ABCE subfamily members also indicates a closer relationship between C. briggsae and C. remanei than between either of these species and C. elegans. A comparison between insect and mammalian species indicates lineage-specific duplications or deletions of ABC genes, while the family size remains relatively constant. Sites undergoing positive selection within subfamily D, which are implicated in very-long-chain fatty acid transport, were identified. The evolution of these sites might be driven by the changes in food source with time.  相似文献   

9.

Background

The metzincins are a large gene superfamily of proteases characterized by the presence of a zinc protease domain, and include the ADAM, ADAMTS, BMP1/TLL, meprin and MMP genes. Metzincins are involved in the proteolysis of a wide variety of proteins, including those of the extracellular matrix. The metzincin gene superfamily comprises eighty proteins in the human genome and ninety-three in the mouse. When and how the level of complexity apparent in the vertebrate metzincin gene superfamily arose has not been determined in detail. Here we present a comprehensive analysis of vertebrate metzincins using genes from both Ciona intestinalis and Danio rerio to provide new insights into the complex evolution of this gene superfamily.

Results

We have identified 19 metzincin genes in the ciona genome and 83 in the zebrafish genome. Phylogenetic analyses reveal that the expansion of the metzincin gene superfamily in vertebrates has occurred predominantly by the simple duplication of pre-existing genes rather than by the appearance and subsequent expansion of new metzincin subtypes (the only example of which is the meprin gene family). Despite the number of zebrafish metzincin genes being relatively similar to that of tetrapods (e.g. man and mouse), the pattern of gene retention and loss within these lineages is markedly different. In addition, we have studied the evolution of the related TIMP gene family and identify a single ciona and four zebrafish TIMP genes.

Conclusion

The complexity seen in the vertebrate metzincin gene families was mainly acquired during vertebrate evolution. The metzincin gene repertoire in protostomes and invertebrate deuterostomes has remained relatively stable. The expanded metzincin gene repertoire of extant tetrapods, such as man, has resulted largely from duplication events associated with early vertebrate evolution, prior to the sarcopterygian-actinopterygian split. The teleost repertoire of metzincin genes in part parallels that of tetrapods but has been significantly modified, perhaps as a consequence of a teleost-specific duplication event.  相似文献   

10.
GTPases of the Rho family are evolutionarily conserved proteins that control cell shape dynamics during physiological processes as diverse as cell migration and polarity, axon outgrowth and guidance, apoptosis and phagocytosis. In mammals, 18 Rho proteins are distributed in 7 subfamilies. Rho, Rac and Cdc42 are the best-characterized ones, benefiting from the use of worm and drosophila, which only express these 3 subfamilies. An additional model would therefore help understand the physiological role of other mammalian subfamilies. We identified in genome databases the complete Rho family of two ascidians, Ciona intestinalis and Ciona savignyi, and showed that these families contain single ancestors of most mammalian Rho subfamilies. In Ciona intestinalis, all Rho genes are expressed and display specific developmental variations of mRNA expression during tadpole formation. Although C. intestinalis expresses five additional Rac compared to the closely related Ciona savignyi, only two appeared fully active in functional assays. Last, we identified in Ciona intestinalis database more than 50 Rho regulators (RhoGEFs and RhoGAPs) and 20 effector targets, whose analysis further supports the notion that Rho signaling components are of comparable complexity in mammals and ascidians. Since the tadpole of ascidians combines vertebrate-like developmental features with reduced cell number, particularly adapted to evolutionary and developmental biology studies, our data advocate this model for physiological studies of Rho signaling pathways.  相似文献   

11.
12.
Molecular analysis of the NAC gene family in rice   总被引:14,自引:0,他引:14  
Genes that encode products containing a NAC domain, such as NO APICAL MERISTEM (NAM) in petunia, CUP-SHAPED COTYLEDON2 (CUC2) and NAP in Arabidopsis thaliana, have crucial functions in plant development. We describe here molecular aspects of the OsNAC genes that encode proteins with NAC domains in rice (Oryza sativa L.). Sequence analysis revealed that the NAC genes in plants can be divided into several subfamilies, such as the NAM, ATAF, and OsNAC3 subfamilies. In rice, OsNAC1 and OsNAC2 are classified in the NAM subfamily, which includes NAM and CUC2, while OsNAC5 and OsNAC6 fall into the ATAF subfamily. In addition to the members of these subfamilies, the rice genome contains the NAC genes OsNAC3, OsNAC4 (both in the OsNAC3 subfamily), OsNAC7, and OsNAC8. These results and Southern analysis indicate that the OsNAC genes constitute a large gene family in the rice genome. Each OsNAC gene is expressed in a specific pattern in different organs, suggesting that this family has diverse and important roles in rice development.  相似文献   

13.
The ATP-binding cassette (ABC) superfamily is a larger protein family with diverse physiological functions in all kingdoms of life. We identified 53 ABC transporters in the silkworm genome, and classified them into eight subfamilies (A-H). Comparative genome analysis revealed that the silkworm has an expanded ABCC subfamily with more members than Drosophila melanogaster, Caenorhabditis elegans, or Homo sapiens. Phylogenetic analysis showed that the ABCE and ABCF genes were highly conserved in the silkworm, indicating possible involvement in fundamental biological processes. Five multidrug resistance-related genes in the ABCB subfamily and two multidrug resistance-associated-related genes in the ABCC subfamily indicated involvement in biochemical defense. Genetic variation analysis revealed four ABC genes that might be evolving under positive selection. Moreover, the silkworm ABCC4 gene might be important for silkworm domestication. Microarray analysis showed that the silkworm ABC genes had distinct expression patterns in different tissues on day 3 of the fifth instar. These results might provide new insights for further functional studies on the ABC genes in the silkworm genome.  相似文献   

14.
Schriml LM  Dean M 《Genomics》2000,64(1):24-31
ATP-binding cassette (ABC) genes encode a family of transport proteins known to be involved in a number of human genetic diseases. In this study, we characterized the ABC superfamily in Mus musculus through in silico gene identification and mapping and phylogenetic analysis of mouse and human ABC genes. By querying dbEST with amino acid sequences from the conserved ATP-binding domains, we identified and partially sequenced 18 new mouse ABC genes, bringing the total number of mouse ABC genes to 34. Twelve of the new ABC genes were mapped in the mouse genome to the X chromosome and to 10 of the 19 autosomes. Phylogenetic relationships of mouse and human ABC genes were examined with maximum parsimony and neighbor-joining analyses that demonstrated that mouse and human ABC orthologs are more closely related than are mouse paralogs. The mouse ABC genes could be grouped into the seven previously described human ABC subfamilies. Three mouse ABC genes mapped to regions implicated in cholesterol gallstone susceptibility.  相似文献   

15.
16.
17.
We have carried out a comprehensive survey of the spatiotemporal expression of cadherin superfamily genes in the basal chordate Ciona intestinalis, as an example of a genome-wide expression study of a gene family directly regulating cellular processes in morphogenesis. We found 15 definitely expressed cadherin superfamily genes in the Ciona intestinalis genome. Up to the late gastrula stage, all identified delta-protocadherins and the type II classical cadherin, but not other subfamily members, were zygotically expressed. At later stages, however, all cadherin superfamily genes were expressed in the nervous system. These data are useful for understanding the role of these genes in Ciona development and the evolution of chordates.  相似文献   

18.
Solute transport systems are one of the major ways in which organisms interact with their environment. Typically, transport is catalysed by integral membrane proteins, of which one of the largest groups is the ATP‐binding cassette (ABC) proteins. On the basis of sequence similarities, a large family of ABC proteins has been identified in Arabidopsis. A total of 60 open reading frames (ORFs) encoding ABC proteins were identified by BLAST homology searching of the nuclear genome. These 60 putative proteins include 89 ABC domains. Based on the assignment of transmembrane domains (TMDs), at least 49 of the 60 proteins identified are ABC transporters. Of these 49 proteins, 28 are full‐length ABC transporters (eight of which have been described previously), and 21 are uncharacterized half‐transporters. Three of the remaining proteins identified appear to be soluble, lacking identifiable TMDs, and most likely have non‐transport functions. The eight other ORFs have homology to the nucleotide‐binding and transmembrane components of multi‐subunit permeases. The majority of ABC proteins found in Arabidopsis can, on the basis of sequence homology, be assigned to subfamilies equivalent to those found in the yeast genome. This assignment of the Arabidopsis ABC proteins into easily recognizable subfamilies (with distinguishable subclusters) is an important first step in the elucidation of their functional role in higher plants.  相似文献   

19.
磷脂酰乙醇胺结合蛋白(PEBP,phosphatidyl ethanolamine-binding protein)基因家族在动物、植物和微生物中广泛存在,在控制植物开花和种子休眠中起重要作用。本研究对大豆PEBP基因家族进行了分析,发现了27个大豆PEBP基因的候选序列,其中16个具有完整PEBP结构域的全长序列被认为是大豆Gm PEBP家族基因。Gm PEBP基因分布在9条染色体上,基因结构高度保守。通过系统发生分析,可将大豆Gm PEBP基因家族成员分为FT-like、TFL1-like和MFT-like 3个亚族,并且发现Gm PEBP家族成员数目按照大豆物种特异性的方式进行了扩张。对重复基因的Ks分析表明,绝大多数重复基因主要由5900万年前和1300万年前的大豆基因组复制所致。  相似文献   

20.
Cao L  Ding X  Yu W  Yang X  Shen S  Yu L 《FEBS letters》2007,581(28):5526-5532
Septins, a conserved family of cytoskeletal GTP-binding proteins, were presented in diverse eukaryotes. Here, a comprehensive phylogenetic and evolutionary analysis for septin proteins in metazoan was carried out. First, we demonstrated that all septin proteins in metazoan could be clustered into four subgroups, and the representative homologue of every subgroup was presented in the non-vertebrate chordate Ciona intestinalis, indicating that the emergence of the four septin subgroups should have occurred prior to divergence of vertebrates and invertebrates, and the expansion of the septin gene number in vertebrates was mainly by the duplication of pre-existing genes rather than by the appearance of new septin subgroup. Second, the direct orthologues of most human septins existed in zebrafish, which suggested that human septin gene repertoire was mainly formed by as far as before the split between fishes and land vertebrates. Third, we found that the evolutionary rate within septin family in mammalian lineage varies significantly, human SEPT1, SEPT 10, SEPT 12, and SEPT 14 displayed a relative elevated evolutionary rate compared with other septin members. Our data will provide new insights for the further function study of this protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号