首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proton decoupled 15N NMR spectroscopy is shown to be a useful tool for probing the dynamic structure of the bacterial cell envelope. The proton decoupled 15N NMR spectra of Escherichia coli whole cells, cell envelopes and outer membranes were obtained and displayed resonances originating from protein side-chain groups, phosphatidylethanolamine, and peptidoglycan. Removal of phospholipids from the cell envelope resulted in a decrease in the motional freedom of peptidoglycan and cell envelope proteins. The mobility of the protein Arg side-chain groups is incresed in the absence of peptidoglycan. These data provide insights into the effect of supramolecular organization on the dynamic structure of the E. coli cell envelope.  相似文献   

2.
A Lapidot  C S Irving 《Biochemistry》1979,18(4):704-714
The proton-decoupled 9.12 MHz 15N NMR spectra of 15N-labeled Bacillus subtilis, Bacillus licheniformis, Staphylococcus auresu, Streptococcus faecalis, and Micrococcus lysodeikticus intact cells, isolated cells walls, and cell wall digests have been examined. The general characteristics of Gram-positive bacteria 15N NMR spectra and described and spectral assignments are provided, which allow in vivo 15N NMR to be applied to a wide range of problems in bacterial cell wall research. The qualitative similarity of the intact cell and cell wall spectra found in each bacteria allowed the 15 N resonances observed in the proton broad-band noise-decoupled 15N NMR spectra of intact cells to be assigned to cell wall components. Each of the five Gram-positive bacteria displayed a unique set of cell wall 15N resonances, which reflected variations in the primary structure of peptidoglycans and the amounts of teichoic acid and teichuronic acid in the cell wall, as well as the dynamic properties of the cell wall polymers. Spectral assignments of cell wall 15 N resonances assigned to teichoic D-Ala residues, teichuronic acid and acetamido groups, and peptidoglycan acetamido, amide, peptide, and free amino groups have been made on the basis of specific isotopic labeling and dilution experiments, comparison of chemical shifts to literature values, determination of pH titration shifts, cell wall fractionation experiments, and comparative analysis of the cell wall lysozyme digest spectra in terms of the known primary sequences of peptide chains. All the peptidoglycan 15N peptide resonances observed in the intact cells and isolated cell walls could be accounted for by residues in the bridge or crossbar regions of the peptide chains, which indicated that only the cross-linking groups had a high degree of motional freedom. Thermal- and pH-induced conformational changes around the cross-linking D-Ala residues were detected in the B. licheniformis cell wall lysozyme digest products. Comparison of the proton broad-band noise-decoupled and gated decoupled intact cell and cell wall 15N spectra indicated that broad-band proton decoupling resulted in nulling of cytoplasmic resonances and enhancement of the cell wall resonances by the 15N [1H5 nuclear Overhauser effect.  相似文献   

3.
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.  相似文献   

4.
Nuclear magnetic resonance (NMR) studies of the c subunit of F1F0 ATP synthase from Escherichia coli are presented. A combination of homonuclear (1H-1H) and heteronuclear (1H-15N) 2D and 3D methods was applied to the 79-residue protein, dissolved in trifluoroethanol. Resonance assignment for all the backbone amide groups and many C alpha H side-chain protons was achieved. Analysis of inter- and intraresidue 1H-1H nuclear Overhauser effect (NOE) data and scalar coupling constant information indicates that this protein contains two extended regions of predominant alpha-helical character (residues 10-40 and 48-77) separated by an eight-residue segment which displays little evidence of ordered secondary structure. This model is consistent with information about the molecular motion of the protein deduced from 15N-1H heteronuclear NOE data and observed pKa values of carboxylic acid groups.  相似文献   

5.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) of Escherichia coli. Virtually complete (98%) backbone 1H, 15N, and 13C nuclear magnetic resonance (NMR) signal assignments were determined by using a battery of triple-resonance three-dimensional (3D) NMR pulse sequences. In addition, nearly complete (1H, 95%; 13C, 85%) side-chain 1H and 13C signal assignments were obtained from an analysis of 3D 13C HCCH-COSY and HCCH-TOCSY spectra. These experiments rely almost exclusively upon one- and two-bond J couplings to transfer magnetization and to correlate proton and heteronuclear NMR signals. Hence, essentially complete signal assignments of this 168-residue protein were made without any assumptions regarding secondary structure and without the aid of a crystal structure, which is not yet available. Moreover, only three samples, one uniformly 15N-enriched, one uniformly 15N/13C-enriched, and one containing a few types of amino acids labeled with 15N and/or 13C, were needed to make the assignments. The backbone assignments together with the 3D 15N NOESY-HMQC and 13C NOESY-HMQC data have provided extensive information about the secondary structure of this protein [Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y., & Roseman, S (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3479-3488]. The nearly complete set of backbone and side-chain atom assignments reported herein provide a basis for studies of the three-dimensional structure and dynamics of IIIGlc as well as its interactions with a variety of membrane and cytoplasmic proteins.  相似文献   

6.
Matrix protein (36,500 daltons), one of the major polypeptides of the Escherichia coli cell envelope, is arranged in a periodic monolayer which covers the outer surface of the peptidoglycan. Although its association with the peptidoglycan layer is probably tight, the periodic structure of the peptidoglycan. Although its association with the peptidoglycan later is probably tight, the periodic structure is maintained in the absence of peptidoglycan, and is therefore based on strong protein-protein interactions. A detailed analysis of the ultrastructure of the matrix protein array by electron microscopy and image processing of specimens prepared by negative staining or by freeze-drying and shadowing shows that the molecules are arranged according to three fold symmetry on a hexagonal lattice whose repeat is 7.7 nm. The most pronounced feature of the unit cell, which probably contains three molecules of matrix protein, is a triplet of indentations, each approx. 2 nm in diameter, with a center-to-center spacing of 3nm. They are readily penetrated by stain and may represent channels which span the protein monolayer.  相似文献   

7.
The affinity to the matrix protein, one of the major outer membrane proteins of Escherichia coli, for the peptidoglycan was examined of extracting the cell envelope complex at 55 degrees C and 2% sodium dodecyl sulfate containing different amounts of NaCl. It was found that the matrix protein was extracted from the peptidoglycan of a mutant strain (lpo) that lacks another major membrane protein, the lipoprotein, at a lower NaCl concentration than was the matrix protein of the wild-type cell (lpo+). When the envelope fraction of the wild-type strain was treated with trypsin, which is known to cleave the bound-form lipoprotein from the peptidoglycan, the affinity of the matrix protein for the peptidoglycan decreased to the same level as that of the affinity of the matrix protein for the peptidoglycan of the mutant strain. It was further shown that the free-form lipoprotein was also retained in the matrix protein-peptidoglycan complex, although the extent of retention of the free form of the lipoprotein was less than that of the matrix protein. These results indicate that both the free and the bound forms of the lipoprotein are closely associated with the matrix protein and that the bound form of the lipoprotein plays and important role in the association between the matrix protein and the peptidoglycan.  相似文献   

8.
Assembly of pili in Gram-positive bacteria and their attachment to the cell wall envelope are mediated by sortases. In Bacillus cereus and its close relative Bacillus anthracis, the major pilin protein BcpA is cleaved between the threonine and the glycine of its C-terminal LPXTG motif sorting signal by the pilin-specific sortase D. The resulting acyl enzyme intermediate is relieved by the nucleophilic attack of the side-chain amino group of lysine within the YPKN motif of another BcpA subunit. Cell wall anchoring of assembled BcpA pili requires sortase A, which also cleaves the LPXTG sorting signal of BcpA between its threonine and glycine residues. We show here that sortases A and D require only the C-terminal sorting signal of BcpA for substrate cleavage. Unlike sortase D, which accepts the YPKN motif as a nucleophile, sortase A forms an amide bond between the BcpA C-terminal carboxyl group of threonine and the side-chain amino group of diaminopimelic acid within the cell wall peptidoglycan of bacilli. These results represent the first demonstration of a cell wall anchor structure for pili, which are deposited by sortase A into the envelope of many different microbes.  相似文献   

9.
Essentially complete (96%) sequence-specific assignments were made for the backbone and side-chain 1H, 13C, and 15N resonances of Fusarium solani pisi cutinase, produced as a 214-residue heterologous protein in Escherichia coli, using heteronuclear NMR techniques. Three structural features were noticed during the assignment. (1) The secondary structure in solution corresponds mostly with the structure from X-ray diffraction, suggesting that both structures are globally similar. (2) The HN of Ala32 has a strongly upfield-shifted resonance at 3.97 ppm, indicative of an amide-aromatic hydrogen bond to the indole ring of Trp69 that stabilizes the N-terminal side of the parallel beta-sheet. (3) The NMR data suggest that the residues constituting the oxyanion hole are quite mobile in the free enzyme in solution, in contrast to the existence of a preformed oxyanion hole as observed in the crystal structure. Apparently, cutinase forms its oxyanion hole upon binding of the substrate like true lipases.  相似文献   

10.
The Tol-peptidoglycan-associated lipoprotein (PAL) system of Escherichia coli is a multiprotein complex of the envelope involved in maintaining outer membrane integrity. PAL and the periplasmic protein TolB, two components of this complex, are interacting with each other, and they have also been reported to interact with OmpA and the major lipoprotein, two proteins interacting with the peptidoglycan. All these interactions suggest a role of the Tol-PAL system in anchoring the outer membrane to the peptidoglycan. Therefore, we were interested in better understanding the interaction between PAL and the peptidoglycan. We designed an in vitro interaction assay based on the property of purified peptidoglycan to be pelleted by ultracentrifugation. Using this assay, we showed that a purified PAL protein interacted in vitro with pure peptidoglycan. A peptide competition experiment further demonstrated that the region from residues 89 to 130 of PAL was sufficient to bind the peptidoglycan. Moreover, the fact that this same region of PAL was also binding to TolB suggested that these two interactions were exclusive. Indeed, the TolB-PAL complex appeared not to be associated with the peptidoglycan. This led us to the conclusion that PAL may exist in two forms in the cell envelope, one bound to TolB and the other bound to the peptidoglycan.  相似文献   

11.
A docking model is proposed for the target recognition domain of the lytic exoenzyme zoocin A with the peptidoglycan on the outer cell surface of sensitive bacterial strains. Solubilized fragments from such peptidoglycans perturb specific backbone and side chain amide resonances in the recombinant form of the domain designated rTRD as detected in two-dimensional 1H–15N correlation NMR spectra. The affected residues comprise a shallow surface cleft on the protein surface near W115, N53, N117, and Q105 among others, which interacts with the peptide portion of the peptidoglycan. Calculations with AutoDock Vina provide models of the docking interface. There is approximate homology between the rTDR-peptidoglycan docking site and the antigen binding site of Fab antibodies with the immunoglobin fold. EDTA was also found to bind to rTRD, but at a site distinct from the proposed peptidoglycan docking site.  相似文献   

12.
Escherichia coli contains multiple peptidoglycan-specific hydrolases, but their physiological purposes are poorly understood. Several mutants lacking combinations of hydrolases grow as chains of unseparated cells, indicating that these enzymes help cleave the septum to separate daughter cells after cell division. Here, we confirm previous observations that in the absence of two or more amidases, thickened and dark bands, which we term septal peptidoglycan (SP) rings, appear at division sites in isolated sacculi. The formation of SP rings depends on active cell division, and they apparently represent a cell division structure that accumulates because septal synthesis and hydrolysis are uncoupled. Even though septal constriction was incomplete, SP rings exhibited two properties of mature cell poles: they behaved as though composed of inert peptidoglycan, and they attracted the IcsA protein. Despite not being separated by a completed peptidoglycan wall, adjacent cells in these chains were often compartmentalized by the inner membrane, indicating that cytokinesis could occur in the absence of invagination of the entire cell envelope. Finally, deletion of penicillin-binding protein 5 from amidase mutants exacerbated the formation of twisted chains, producing numerous cells having septa with abnormal placements and geometries. The results suggest that the amidases are necessary for continued peptidoglycan synthesis during cell division, that their activities help create a septum having the appropriate geometry, and that they may contribute to the development of inert peptidoglycan.  相似文献   

13.
Cross-polarization magic-angle spinning 13C and 15N NMR, rotational-echo double resonance 13C NMR, and delays alternating with nutation for tailored excitation-difference 13C NMR spectra have been obtained from lyophilized cell walls of Bacillus subtilis grown on a synthetic medium containing D,L-[2-13C, 15N]aspartate and D-[1-13C]alanine. Label from aspartate is incorporated into D-glutamic acid and m-diaminopimelic acid of cell-wall peptidoglycan, while label from alanine appears in the C-1 positions of both D- and L-alanyl residues. The cross-link index (the fraction of peptide stems joined by an isopeptide covalent bond) is obtained directly from analysis of the results of the 13C NMR experiments. However, specific isotopic enrichments of cell-wall components cannot be obtained from NMR data alone. The latter are determined either from a gas chromatographic-mass spectrometric analysis of the amino acids derived from hydrolysis of cell-wall peptidoglycan, or from a combination of NMR and gas chromatographic-mass spectrometric results. The combined analysis is overdetermined and so involves the least error for evaluations of both the cross-link index and the isotopic enrichments. The cross-link index is 0.33 +/- 0.03 for cell walls of B. subtilis grown in the presence of the antibiotic, cephalothin.  相似文献   

14.
The wild type of Selenomonas ruminantium subsp. lactilytica, which is a strictly anaerobic, Gram-negative bacterium isolated from sheep rumen, requires one of the normal saturated volatile fatty acids with 3 to 10 carbon atoms for its growth in a glucose medium; however, no such obligate requirement of fatty acid is observed when the cells are grown in a lactate medium. This bacterium is characterized by a unique structure of the cell envelope and a novel lysine decarboxylase and its regulatory protein. In the first part of this article, we will refer to the chemical structure of phospholipid and lipopolysaccharide in the cell membranes of this bacterium compared with that from the general Gram-negative bacteria for understanding their biological functions. S. ruminantium has neither free nor bound forms of Braun lipoprotein which plays an important role of the maintenance of the structural integrity of the cell surface in general Gram-negative bacteria. However, S. ruminantium has cadaverine, which links covalently to the peptidoglycan as a pivotal constituent for the cell division. In the second part of this article, we will refer to the chemical structure of the cadaverine-containing peptidoglycan, its biosynthesis, and the biological function. In the third part of this article, we will depict the molecular cloning of the genes encoding S. ruminanitum lysine decarboxylase (LDC) and its regulatory protein of 22-kDa (22-kDa protein; P22) which has similar characteristics to that of antizyme of ornithine decarboxylase in eukaryotic cells, and the molecular dissection of these proteins for understanding the regulation of cadaverine biosynthesis. Finally, we will illustrate a proposed structure of the cell envelope, a processes of biosynthesis of the cadaverine-containing peptidoglycan layer, and the LDC degradation mechanism in S. ruminantium, on the basis of the analyses of the cell envelope components, the results from the in vitro experiments on the biosynthesis of the peptidoglycan layer, and the current status of the knowledge on LDC and P22 in this organism.  相似文献   

15.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

16.
3,4-Dihydroxy-2-butanone 4-phosphate synthase catalyses the release of C-4 from the substrate, ribulose phosphate, via a complex series of rearrangement reactions. The cognate ribB gene of Escherichia coli was hyperexpressed in a recombinant E. coli strain. The protein was shown to be a 46-kDa homodimer by hydrodynamic analysis. A variety of protein samples labelled with different grades of 13C, 15N and 2H, i.e. one with 100% 2H and 15N, one with 75% 2H, 99% 13C, 15N, and one with 100% 2H, 99% 13C,15N were prepared. Despite the large molecular size, 2- and 3-dimensional NMR spectra of reasonable quality were obtained. Attempts at the assignment of individual 13C, 15N and 1H signals show, in principle, the feasibility of structure determination. The number of NMR signals shows unequivocally that the homodimeric protein obeys strict C2 symmetry.  相似文献   

17.
The 23 kDa two-domain periplasmic chaperone FimC from Escherichia coli is required for the assembly of type-1 pili, which are filamentous, highly oligomeric protein complexes anchored to the outer bacterial membrane that mediate adhesion of pathogenic E. coli strains to host cell surfaces. Here we identified the contact sites on the surface of the NMR structure of FimC that are responsible for the binding of the 28 kDa mannose-binding type-1 pilus subunit FimH by 15N and 1H NMR chemical shift mapping, using transverse relaxation-optimized spectroscopy (TROSY). The FimH-binding surface of FimC is formed nearly entirely by the N-terminal domain, and its extent and shape indicate that FimC binds a folded form of the pilus subunits.  相似文献   

18.
Solid-state NMR experiments with stable isotope-labeled Staphylococcus aureus have provided insight into the structure of the peptidoglycan binding site of a potent fluorobiphenyl derivative of chloroeremomycin (Eli Lilly LY329332). Rotational-echo double resonance (REDOR) NMR provided internuclear distances from the 19F of this glycopeptide antibiotic to natural-abundance 31P and to specific 13C and 15N labels biosynthetically incorporated into the bacteria from labeled alanine, glycine, or lysine in the growth medium. Results from experiments with intact late log phase bacteria and cell walls indicated homogeneous drug-peptidoglycan binding. Drug dimers were not detected in situ, and the hydrophobic fluorobiphenyl group of LY329332 did not insert into the bilayer membrane. A model of the binding site consistent with the REDOR results positions the vancomycin cleft around an un-cross-linked D-Ala-D-Ala peptide stem with the fluorobiphenyl moiety of the antibiotic near the base of a second, proximate stem in a locally ordered peptidoglycan matrix.  相似文献   

19.
X-linked lymphoproliferative disease is caused by mutations in the protein SAP, which consists almost entirely of a single SH2 domain. SAP interacts with the Tyr281 site of the T<-->B cell signaling protein SLAM via its SH2 domain. Interestingly, binding is not dependent on phosphorylation but does involve interactions with residues N-terminal to the Tyr. We have used 15N and 2H NMR relaxation experiments to investigate the motional properties of the SAP SH2 domain backbone amides and side-chain methyl groups in the free protein and complexes with phosphorylated and non-phosphorylated peptides derived from the Tyr281 site of SLAM. The most mobile methyl groups are in side-chains with large RMSD values between the three crystal structures of SAP, suggesting that fast time-scale dynamics in side-chains is associated with conformational plasticity. The backbone amides of two residues which interact with the C-terminal part of the peptides experience fast time-scale motions in the free SH2 domain that are quenched upon binding of either the phosphorylated or non-phosphorylated peptide. Of most importance, the mobility of methyl groups in and around the binding site for residues in the N-terminus of the peptide is significantly restricted in the complexes, underscoring the dominance of this interaction with SAP and demonstrating a correlation between changes in rapid side-chain motion upon binding with local binding energy.  相似文献   

20.
The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号