首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

3.
5S Ribosomal RNA Database   总被引:14,自引:3,他引:11       下载免费PDF全文
Ribosomal 5S RNA (5S rRNA) is an integral component of the large ribosomal subunit in all known organisms with the exception only of mitochondrial ribosomes of fungi and animals. It is thought to enhance protein synthesis by stabilization of a ribosome structure. This paper presents the updated database of 5S rRNA and their genes (5S rDNA). Its short characteristics are presented in the Introduction. The database contains 2280 primary structures of 5S rRNA and 5S rRNA genes. These include 536 eubacterial, 61 archaebacterial, 1611 eukaryotic and 72 organelle sequences. The database is available on line through the World Wide Web at http://biobases.ibch.poznan.pl/5SData/.  相似文献   

4.
5S RNA as such is not incorporated into 16S-23S RNA complex formed under reconstitution condition. However, the addition of 50S ribosomal proteins, L5, L18 and L25/L15 results in its incorporation in stoichiometric amount. None of the proteins added individually is capable of incorporating 5S RNA into the complex. Of the different combinations in pairs that are possible out of the four proteins, the pairs L5, L18 and L15, L18 stimulate the incorporation to some extent. Of the four possible triplets, L5, L18, L25 or L5, L15, L18 is the most efficient for maximum incorporation of 5S RNA. The presence of all the four proteins is no more effective than the combinations of the three.  相似文献   

5.
6.
Summary Based on the comparative analyses of the primary structure of 5S RNAs from 19 organisms, a secondary structure model of 5S RNA is proposed. 5S RNA has essentially the same structure among all prokaryotic species. The same is true for eukaryotic 5S RNAs. Prokaryotic and eukaryotic 5S RNAs are also quite similar to each other, except for a difference in a specific region.By comparing the nucleotide alignment from the juxtaposed 5S RNA secondary structures, a phylogenic tree of nineteen organisms was constructed. The time of divergence between prokaryotes and eukaryotes was estimated to be 2.5×109 years ago (minimum estimate: 2.1×109).  相似文献   

7.
8.
9.
The sequence of Chlorella cytoplasmic 5 S RNA has been determined by fingerprinting techniques. Partial digests were fractionated by a two-dimensional acrylamide gel electrophoretic technique, which indicates whether specific fragments are paired in the molecule. In this way, the four main base-paired regions of the molecule were located. The sequence of Chlorella cytoplasmic 5 S RNA is related to, but different from, that of other eukaryotic 5 S RNAs: it shows approximately 60% homology with vertebrate 5 S RNA and 40% homology with yeast 5 S RNA. In some respects the conformation of the molecule in solution is quite different from that of other sequenced 5 S RNAs: in particular, the highly accessible region found around position 40 in all other 5 S RNAs (prokaryotic and eukaryotic) does not exist in this molecule.  相似文献   

10.
Partial localization of the 5S RNA binding site on 23S RNA   总被引:2,自引:0,他引:2  
P N Gray  R Monier 《Biochimie》1972,54(1):41-45
  相似文献   

11.
12.
13.
5 S and 5.8 S ribosomal RNA sequences and protist phylogenetics   总被引:1,自引:0,他引:1  
W F Walker 《Bio Systems》1985,18(3-4):269-278
More than 100 5 S 5.8 S rRNA sequences from protists, including fungi, are known. Through a combination of quantitative treeing and special consideration of "signature' nucleotide combinations, the most significant phylogenetic implications of these data are emphasized. Also, limitations of the data for phylogenetic inferences are discussed and other significant data are brought to bear on the inferences obtained. 5 S sequences from red algae are seen as the most isolated among eukaryotics. A 5 S sequence lineage consisting of oomycetes, euglenoids, most protozoa, most slime molds and perhaps dinoflagellates and mesozoa is defined. Such a lineage is not evident from 5.8 S rRNA or cytochrome c sequence data. 5 S sequences from Ascomycota and Basidiomycota are consistent with the proposal that each is derived from a mycelial form with a haploid yeast phase and simple septal pores, probably most resembling present Taphrinales. 5 S sequences from Chytridiomycota and Zygomycota are not clearly distinct from each other and suggest that a major lineage radiation occurred in the early history of each. Qualitative biochemical data clearly supports a dichotomy between an Ascomycota-Basidiomycota lineage and a Zygomycota-Chytridiomycota lineage.  相似文献   

14.
Summary 5S RNA from B. stearothermophilus and E. coli was reacted with NaIO4 and aniline to remove their 3 terminal nucleoside. These modified 5S RNA molecules were then incorporated in B. stearothermophilus 50 S ribosomal subunits and tested for biological activities. 50 S ribosomes containing the modified 5S RNAs exhibited full activity and we therefore conclude, that the 3 terminus of 5S RNA does not play an active role in protein synthesis.  相似文献   

15.
16.
The ordered structure of 5S RNA   总被引:9,自引:0,他引:9  
  相似文献   

17.
18.
Nucleocytoplasmic transport of 5S ribosomal RNA in Xenopus oocytes occurs in the context of small, non-ribosomal RNPs. The complex with the zinc finger protein TFIIIA (7S RNP) is exported from the nucleus and stored in the cytoplasm, whereas the complex with the ribosomal protein L5 (5S RNP) shuttles between the nucleus and the cytoplasm. Nuclear import- and export-signals appear to reside within the protein moiety of these RNPs. Import of TFIIIA is inhibited by RNA binding, whereas nuclear transfer of L5 is not influenced by RNA binding. We propose that the export capacity of both, TFIIIA and L5, is regulated by the interaction with 5S ribosomal RNA.  相似文献   

19.
Three small RNAs of the cytoplasmic 8OS ribosomes of the green unicellular alga Chlamydomonas reinhardii have been sequenced. They include two species of ribosomal 5S RNA, a major and a minor one of 122 and 121 nucleotides respectively, which differ from each other by 17 bases, and also the ribosomal 5.8S RNA of 156 nucleotides. Novel structural features can be recognized in the 5S RNAs of C. reinhardii by a comparison with published 5S RNA sequences. In addition the secondary structure of these small RNA molecules has been examined using a newly developed method based on differential nuclease susceptibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号