首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IL-17 was discovered in 1995/96 as a T cell derived cytokine with effects on inflammation and neutrophil activation. In 2006, the precise cell source of IL-17 was identified in the mouse, and these cells were named Th17 cells. They play a role in various human diseases associated with inflammation and destruction such as rheumatoid arthritis, psoriasis, Crohn's disease, multiple sclerosis, where IL-17 can be seen as a therapeutic target.  相似文献   

2.
Both Th1 and Th17 cells have been implicated in the pathogenesis of inflammatory bowel disease and experimental colitis. However, the complex relationship between Th1 and Th17 cells and their relative contributions to the pathogenesis of inflammatory bowel disease have not been completely analyzed. Although it has been recently shown that Th17 cells can convert into Th1 cells, the underlying in vivo mechanisms and the role of Th1 cells converted from Th17 cells in the pathogenesis of colitis are still largely unknown. In this study, we report that Th17 cells from CBir1 TCR transgenic mice, which are specific for an immunodominant microbiota Ag, are more potent than Th1 cells in the induction of colitis, as Th17 cells induced severe colitis, whereas Th1 cells induced mild colitis when transferred into TCRβxδ(-/-) mice. High levels of IL-12 and IL-23 and substantial numbers of IFN-γ(+) Th1 cells emerged in the colons of Th17 cell recipients. Administration of anti-IL-17 mAb abrogated Th17 cell-induced colitis development, blocked colonic IL-12 and IL-23 production, and inhibited IFN-γ(+) Th1 cell induction. IL-17 promoted dendritic cell production of IL-12 and IL-23. Furthermore, conditioned media from colonic tissues of colitic Th17 cell recipients induced IFN-γ production by Th17 cells, which was inhibited by blockade of IL-12 and IL-23. Collectively, these data indicate that Th17 cells convert to Th1 cells through IL-17 induction of mucosal innate IL-12 and IL-23 production.  相似文献   

3.
IL-17 and Th17 cells in tuberculosis   总被引:1,自引:0,他引:1  
Tuberculosis is primarily a disease of the lung. Constant expression of cellular immunity in this organ is required to control Mycobacterium tuberculosis growth, but this can also result in chronic inflammation and pathologic consequences. During primary tuberculosis both IFN-γ and IL-17 are induced: both are potent inflammatory cytokines capable of inducing expression of chemokines that promote cell recruitment and granuloma organization throughout infection. During the chronic phase, a balance between Th1 and Th17 responses needs to be achieved to control bacterial growth and limit immunopathology, as a shift of the response towards excessive IL-17 production may sustain extensive neutrophil recruitment and tissue damage. Thus, regulation of Th1 and Th17 responses during tuberculosis is essential to promote anti-mycobacterial immunity and prevent extensive immunopathological consequences.  相似文献   

4.
Interleukin (IL-)17 is a potent proinflammatory cytokine for which an important role in the immune response against infections and in autoimmune diseases has been demonstrated. Recently, it has been shown that - in addition to mature T cells which are primed in the immune periphery - this cytokine can also be produced by T cells in the thymus, so-called naturally occurring IL-17-producing T cells (nT17 cells). In this study we demonstrate that the generation and activation of nT17 cells in the thymus do not depend on the cytokine IL-6. In addition, nT17 cells are not regulated by IL-2. These properties of nT17 cells significantly differ from induced IL-17-producing T cells primed in the immune periphery (iT17 cells). Given the strong association of IL-17-producing T cells with immune responses against infections and human autoimmune diseases, closer characterization of nT17 cells is warranted.  相似文献   

5.
Lately, IL-17-secreting Th cells have received an overwhelming amount of attention and are now widely held to be the major pathogenic population in autoimmune diseases. In particular, IL-22-secreting Th17 cells were shown to specifically mark the highly pathogenic population of self-reactive T cells in experimental autoimmune encephalomyelitis (EAE). As IL-17A itself was found to only play a minor role during the development of EAE, IL-22 is now postulated to contribute to the pathogenic function of Th17 cells. The goal of this study was to determine the role and function of IL-22 during the development of CNS autoimmunity in vivo. We found that CNS-invading encephalitogenic Th17 cells coexpress IL-22 and that IL-22 is specifically induced by IL-23 in autoimmune-pathogenic CD4+ T cells in a time- and dose-dependent manner. We next generated IL-22-/- mice, which--in contrast to the prediction that expression of inflammatory cytokines by CNS-invading T cells inevitably confers pathogenic function--turned out to be fully susceptible to EAE. Taken together, we show that self-reactive Th cells coexpress IL-17 and IL-22, but that the latter also does not appear to be directly involved in autoimmune pathogenesis of the CNS.  相似文献   

6.
Fucoxanthin is a non-provitamin A carotenoid contained in brown seaweeds. We found that it suppressed interleukin-17 secretion from CD4(+) T cells under IL-17-producing T (Th17) cell development conditions. By evaluating T cell differentiation in vitro, fucoxanthin and its metabolite fucoxanthinol inhibited T cell differentiation into Th17 cells. This suggests that fucoxanthin can improve inflammatory diseases due to Th17 cells.  相似文献   

7.
The de novo generation of Foxp3+ regulatory T (Treg) cells in the peripheral immune compartment and the differentiation of Th17 cells both require TGF-beta, and IL-6 and IL-21 are switch factors that drive the development of Th17 cells at the expense of Treg cell generation. The major vitamin A metabolite all-trans retinoic acid (RA) not only enforces the generation of Treg cells but also inhibits the differentiation of Th17 cells. Herein we show that RA enhances TGF-beta signaling by increasing the expression and phosphorylation of Smad3, and this results in increased Foxp3 expression even in the presence of IL-6 or IL-21. RA also inhibits the expression of IL-6Ralpha, IRF-4, and IL-23R and thus inhibits Th17 development. In vitro, RA significantly promotes Treg cell conversion, but in vivo during the development of experimental autoimmune encephalomyelitis it does not increase the frequency of Treg cells in the face of an ongoing inflammation. However, RA suppresses the disease very efficiently by inhibiting proinflammatory T cell responses, especially pathogenic Th17 responses. These data not only identify the signaling mechanisms by which RA can affect both Treg cell and Th17 differentiation, but they also highlight that in vivo during an autoimmune reaction, RA suppresses autoimmunity mainly by inhibiting the generation of effector Th17 cells.  相似文献   

8.
Previous mouse studies have shown that IL-4 increases the expression of ICOS on activated Th cells, resulting in enhanced ICOS expression on Th2 cells. In this study, we show that ICOS expression on human Th cells is not increased by IL-4, but by IL-12 and by IL-23 instead. Consequently, ICOS expression during IL-12-driven Th1 cell polarization was transiently increased compared with the levels on Th0 cells and IL-4-driven Th2 cells. Addition of IL-12 and/or IL-23 during restimulation increased ICOS expression to the same extent on pre-established Th1, Th2, and Th0 cells, indicating that ICOS levels are not stably imposed by prior polarization. In contrast to the findings in the mouse, IL-4 significantly suppressed the ICOS-enhancing effects of IL-12 and IL-23. The functional consequence of variable ICOS levels was shown in coculture experiments with cells expressing the ICOS-ligand B7-related protein 1 (either transfected Chinese hamster ovary cells or autologous dendritic cells). Ligation of ICOS on 2-day-preactivated effector cells increased their cytokine production to an extent proportional to their ICOS expression levels. As the ICOS-enhancing potentials of IL-12 and IL-23 were maintained for several days after stimulation, both on Th1 and Th2 cells, we propose the concept that local regulation of ICOS expression on activated Th cells by IL-12 and/or IL-23 may provide a powerful means to amplify effector T cell responses in peripheral tissues, independently of the polarized state of the Th cells.  相似文献   

9.
Yago T  Nanke Y  Kawamoto M  Yamanaka H  Kotake S 《Cytokine》2012,59(2):252-257
Tacrolimus (FK506, Prograf?) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from na?ve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection.  相似文献   

10.
PGE2, an endogenous lipid mediator released in inflammatory conditions, affects both dendritic cell (DC) differentiation and maturation. Whereas the effect of PGE2 on fully differentiated DC was studied extensively, little is known about its effects on DC differentiation. In this study, we show that bone marrow-derived DC generated in the presence of PGE2 (DCp) acquire a proinflammatory profile; produce higher levels of proinflammatory cytokines/chemokines; express higher levels of MHC class II, costimulatory molecules, and TLRs; and exhibit increased activation of the NF-kappaB-signaling pathway. In addition, DCp exhibit a different IL-12/IL-23 profile than DC generated in the absence of PGE2. The low IL-12 and high IL-23 production in LPS-stimulated DCp is associated with the down-regulation of p35 and the up-regulation of p19 expression, respectively. In agreement with the DCp proinflammatory phenotype and especially with the altered IL-12/IL-23 balance which strongly favors IL-23, DCp also affect T cell differentiation. In contrast to DC which favor Th1 differentiation, DCp promote Th17 and inhibit Th1/Th2 differentiation, in vitro and in vivo. Previous in vivo studies indicated that PGE2 had a proinflammatory effect, especially in models of autoimmune diseases. Our results suggest that the proinflammatory effects of PGE2 could be mediated, at least partially, through effects on differentiating DC and subsequent alterations in CD4+ T cell differentiation, resulting in the preferential development of pathogenic autoimmune Th17 cells.  相似文献   

11.
Zhang C  Zhang J  Yang B  Wu C 《Cytokine》2008,42(3):345-352
Recent evidence from several studies indicated that IL-17-producing Th17 cells can represent the key effector cells in the induction and development of autoimmune disorders. Cyclosporine A (CsA) is a commonly used immunosuppressant to treat lots of autoimmune diseases including rheumatoid arthritis (RA). Here, we demonstrated that PBMCs and purified CD4+ T cells from healthy individuals and patients with RA could be induced to produce large amounts of IL-17 after stimulation with anti-CD3 plus anti-CD28 mAbs. Phenotypic analysis indicated that the majority of IL-17-producing cells were Th17 cells with memory phenotype. The addition of CsA into cell cultures significantly inhibited the IL-17 production by Th17 cells at protein and at mRNA levels. Compared to the PBMCs from normal individuals, PBMCs from the patients with RA produced higher levels of IL-17 that was also significantly inhibited by CsA both at protein and at mRNA levels. The mechanism might be the effect of CsA on the T cells activation because the expression of CD69 and CD25 molecules on T cells was markedly reduced in the presence of CsA. Taken together, these results demonstrated that CsA suppressed the IL-17 production and inhibited the Th17 cells differentiation from both healthy individuals and patients with RA.  相似文献   

12.
IL-17A and IL-17F are members of the IL-17 family that play crucial roles in allergic inflammation. Recent studies reported that IL-17A and IL-17F production from a distinct Th lymphocyte subset, Th17, was specifically induced by IL-23, which was produced by dendritic cells and macrophages in response to microbial stimuli. The IL-23-IL-17 axis might therefore provide a link between infections and allergic diseases. In the present study, we investigated the effects of IL-17A, IL-17F, and IL-23, alone or in combination, on cytokine and chemokine release from eosinophils and the underlying intracellular mechanisms. Human eosinophils were found to constitutively express receptors for IL-17A, IL-17F, and IL-23 at the protein level. IL-17A, IL-17F, and IL-23 could induce the release of chemokines GRO-alpha/CXCL1, IL-8/CXCL8, and MIP-1beta/CCL4 from eosinophils, while IL-17F and IL-23 could also increase the production of proinflammatory cytokines IL-1beta and IL-6. Synergistic effects were observed in the combined treatment of IL-17F and IL-23 on the release of proinflammatory cytokines, and the effects were dose-dependently enhanced by IL-23, but not IL-17F. Further investigations showed that IL-17A, IL-17F, and IL-23 differentially activated the ERK, p38 MAPK, and NF-kappaB pathways. Moreover, inhibition of these pathways using selective inhibitors could significantly abolish the chemokine release induced by IL-17A, IL-17F, and IL-23 and the synergistic increases on IL-1beta and IL-6 production mediated by combined treatment of IL-17F and IL-23. Taken together, our findings provide insight for the Th17 lymphocyte-mediated activation of eosinophils via differential intracellular signaling cascades in allergic inflammation.  相似文献   

13.
14.
TGF-β and IL-6 induce Th17 differentiation, and IL-23 is required for expansion and maintenance of Th17 cells. Recently, it was shown that IL-6 up-regulates IL-23R mRNA in naive CD4+ T cells and therefore IL-6 and IL-23 synergistically promote Th17 differentiation. However, the molecular mechanism whereby IL-6 and IL-23 induce Th17 differentiation and the relevance to TGF-β remain unknown. Here, we found that IL-6 up-regulated IL-23R mRNA expression, and IL-6 and IL-23 synergistically augmented its protein expression. The combination induced Th17 differentiation, and TGF-β1 further enhanced it. IL-6 augmented endogenous TGF-β1 mRNA expression, whereas the amount of TGF-β produced was not enough to induce Th17 differentiation by IL-6 alone. However, unexpectedly, the up-regulation of IL-23R and induction of Th17 differentiation by IL-6 and IL-23 were almost completely inhibited by anti-TGF-β. These results suggest that the induction of IL-23R and Th17 differentiation by IL-6 and IL-23 is mediated through endogenously produced TGF-β.  相似文献   

15.
Considerable evidence supports that the CD4(+) T cell-mediated immune response contributes to the development of atherosclerotic plaque. However, the effects of Th17 cells on atherosclerosis are not thoroughly understood. In this study, we evaluated the production and function of Th17 and Th1 cells in atherosclerotic-susceptible ApoE(-/-) mice. We observed that the proportion of Th17 cells, as well as Th1, increased in atherosclerotic ApoE(-/-) mice compared with nonatherosclerotic wild-type littermates. In ApoE(-/-) mice with atherosclerosis, the expression of IL-17 and retinoic acid-related orphan receptor γt was substantially higher in the arterial wall with plaque than in the arterial wall without plaque. Increased Th17 cells were associated with the magnitude of atherosclerotic plaque in ApoE(-/-) mice. Importantly, treatment of ApoE(-/-) mice with neutralizing anti-IL-17 Ab dramatically inhibited the development of atherosclerotic plaque, whereas rIL-17 application significantly promoted the formation of atherosclerotic plaque. These data demonstrate that Th17 cells play a critical role in atherosclerotic plaque formation in mice, which may have implications in patients with atherosclerosis.  相似文献   

16.
变应性哮喘是一种由辅助性T细胞(T helper cell,Th cell)调节的慢性炎症性疾病。Th1/Th2的失衡一直被认为是变应性哮喘的发病机制,Th2细胞及其分泌的细胞因子白介素4(interleukin 4,IL-4)、IL-5以及IL-13在变应性哮喘特异性症状的发病中发挥重要作用。最近研究发现Th17细胞及其分泌的IL-17参与变应性哮喘的发展过程,IL-23在Th17细胞维持生存和功能成熟中发挥重要作用,并参与抗原诱导的气道炎症反应。该文对目前IL-23/Th17轴在变应性气道炎症反应中的研究进展作一综述。  相似文献   

17.

Background

Th17 cells play a major role in coordinating the host defence in oropharyngeal candidiasis. In this study we investigated the involvement of the Th17 response in an animal model of vulvovaginal candidiasis (VVC).

Methods

To monitor the course of infection we exploited a new in vivo imaging technique.

Results

i) The progression of VVC leads to a strong influx of neutrophils in the vagina soon after the challenge which persisted despite the resolution of infection; ii) IL-17, produced by vaginal cells, particularly CD4 T cells, was detected in the vaginal wash during the infection, reaching a maximum 14 days after the challenge; iii) The amount and kinetics of IL-23 in vaginal fluids were comparable to those in vaginal cells; iv) The inhibition of Th17 differentiation led to significant inhibition of IL-17 production with consequent exacerbation of infection; v) An increased production of βdefensin 2 was manifested in cells of infected mice. This production was strongly reduced when Th17 differentiation was inhibited and was increased by rIL-17 treatment.

Conclusions

These results imply that IL-17 and Th17, along with innate antimicrobial factors, have a role in the immune response to vaginal candidiasis.  相似文献   

18.
Tyrosine kinase-2 (Tyk2), a member of the Jak family of kinases, mediates the signals triggered by various cytokines, including type I IFNs, IL-12, and IL-23. In the current study, we investigated the in vivo involvement of Tyk2 in several IL-12/Th1- and IL-23/Th17-mediated models of experimental diseases, including methylated BSA injection-induced footpad thickness, imiquimod-induced psoriasis-like skin inflammation, and dextran sulfate sodium- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis. In these disease models, Tyk2 deficiency influenced the phenotypes in immunity and/or inflammation. Our findings demonstrate a somewhat broader contribution of Tyk2 to immune systems than previously expected and suggest that Tyk2 may represent an important candidate for drug development by targeting both the IL-12/Th1 and IL-23/Th17 axes.  相似文献   

19.
20.
We previously reported that resident gammadelta T cells in the peritoneal cavity rapidly produced IL-17 in response to Escherichia coli infection to mobilize neutrophils. We found in this study that the IL-17-producing gammadelta T cells did not produce IFN-gamma or IL-4, similar to Th17 cells. IL-17-producing gammadelta T cells specifically express CD25 but not CD122, whereas CD122(+) gammadelta T cells produced IFN-gamma. IL-17-producing gammadelta T cells were decreased but still present in IL-2- or CD25-deficient mice, suggesting a role of IL-2 for their maintenance. IFN-gamma-producing CD122(+) gammadelta T cells were selectively decreased in IL-15-deficient mice. Surprisingly, IL-17-producing gammadelta T cells were already detected in the thymus, although CD25 was not expressed on the intrathymic IL-17-producing gammadelta T cells. The number of thymic IL-17-producing gammadelta T cells was peaked at perinatal period and decreased thereafter, coincided with the developmental kinetics of Vgamma6(+) Vdelta1(+) gammadelta T cells. The number of IL-17-producing gammadelta T cells was decreased in fetal thymus of Vdelta1-deficient mice, whereas Vgamma5(+) fetal thymocytes in normal mice did not produce IL-17. Thus, it was revealed that the fetal thymus-derived Vgamma6(+) Vdelta1(+) T cells functionally differentiate to produce IL-17 within thymus and thereafter express CD25 to be maintained in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号