共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mucopolysaccharidoses are a group of inherited metabolic diseases caused by the absence or deficiency of the lysosomal enzymes that are needed for breaking down glycosaminoglycans (GAGs). Over time, GAGs collect in cells, blood and connective tissues, and increased amounts are excreted in the urine. The result is permanent and includes progressive cell damage that affects the individual's appearance, physical abilities, organ and system functioning and, in certain cases, mental development. Enzyme replacement therapies are currently in use or are being tested for at least three different subtypes (I, II and VI). The aim of the present study was to evaluate the effectiveness and safety of laronidase for treating mucopolysaccharidosis type I. A systematic review of the literature was conducted. A computerized electronic search was then conducted using the CENTRAL, Pubmed, EMBASE, and LILACS databases, to identify any randomized controlled trials. The last date of the search was June 2006. There was no possibility of combining the results, because only one study was included. In the pivotal placebo-controlled trial conducted over a 26-week period, there was a reduction in the urinary excretion of GAGs among treated patients. Regarding adverse events, there were no laronidase-related serious adverse events or deaths. Laronidase seems to be a promising agent for treating mucopolysaccharidosis type I, as shown by the reduction in the urinary excretion of GAGs and the associated improvements in vital capacity and in the performance of defined physical tasks. 相似文献
3.
alpha-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients 总被引:3,自引:0,他引:3
Hein LK Bawden M Muller VJ Sillence D Hopwood JJ Brooks DA 《Journal of molecular biology》2004,338(3):453-462
alpha-L-Iduronidase is a glycosyl hydrolase involved in the sequential degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. A deficiency in alpha-L-iduronidase results in the lysosomal accumulation and urinary secretion of partially degraded glycosaminoglycans and is the cause of the lysosomal storage disorder mucopolysaccharidosis type I (MPS I; Hurler and Scheie syndromes; McKusick 25280). The premature stop codons Q70X and W402X are two of the most common alpha-l-iduronidase gene (IDUA) mutations accounting for up to 70% of MPS I disease alleles in some populations. Here, we have reported a new mutation, making a total of 15 different mutations that can cause premature IDUA stop codons and have investigated the biochemistry of these mutations. Natural stop codon read-through was dependent on the fidelity of the codon when evaluated at Q70X and W402X in CHO-K1 cells, but the three possible stop codons TAA, TAG and TGA, had different effects on mRNA stability and this effect was context dependent. In CHO-K1 cells expressing the Q70X and W402X mutations, the level of gentamicin-enhanced stop codon read-through was slightly less than the increment in activity caused by a lower fidelity stop codon. In this system, gentamicin had more effect on read-through for the TAA and TGA stop codons when compared to the TAG stop codon. In an MPS I patient study, premature TGA stop codons were associated with a slightly attenuated clinical phenotype, when compared to classical Hurler syndrome (e.g. W402X/W402X and Q70X/Q70X genotypes with TAG stop codons). Natural read-through of premature stop codons is a potential explanation for variable clinical phenotype in MPS I patients. Enhanced stop codon read-through is a potential treatment strategy for a large sub-group of MPS I patients. 相似文献
4.
Wilkinson FL Holley RJ Langford-Smith KJ Badrinath S Liao A Langford-Smith A Cooper JD Jones SA Wraith JE Wynn RF Merry CL Bigger BW 《PloS one》2012,7(4):e35787
Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events.Wild-type (WT), MPSI, IIIA and IIIB mouse brains were analysed at 4 and 9 months of age. Quantitative immunohistochemistry showed significantly increased lysosomal compartment, GM2 ganglioside storage, neuroinflammation, decreased and mislocalised synaptic vesicle associated membrane protein, (VAMP2), and decreased post-synaptic protein, Homer-1, in layers II/III-VI of the primary motor, somatosensory and parietal cortex. Total heparan sulphate (HS), was significantly elevated, and abnormally N-, 6-O and 2-O sulphated compared to WT, potentially altering HS-dependent cellular functions. Neuroinflammation was confirmed by significantly increased MCP-1, MIP-1α, IL-1α, using cytometric bead arrays. An overall genotype effect was seen in all parameters tested except for synaptophysin staining, neuronal cell number and cortical thickness which were not significantly different from WT. MPSIIIA and IIIB showed significantly more pronounced pathology than MPSI in lysosomal storage, astrocytosis, microgliosis and the percentage of 2-O sulphation of HS. We also observed significant time progression of all genotypes from 4-9 months in lysosomal storage, astrocytosis, microgliosis and synaptic disorganisation but not GM2 gangliosidosis. Individual genotype*time differences were disparate, with significant progression from 4 to 9 months only seen for MPSIIIB with lysosomal storage, MPSI with astrocytocis and MPSIIIA with microgliosis as well as neuronal loss. Transmission electron microscopy of MPS brains revealed dystrophic axons, axonal storage, and extensive lipid and lysosomal storage. These data lend novel insight to MPS neuropathology, suggesting that MPSIIIA and IIIB have more pronounced neuropathology than MPSI, yet all are still progressive, at least in some aspects of neuropathology, from 4-9 months. 相似文献
5.
Noguti J Pereira VG Martins AM D'Almeida V Ribeiro DA 《Journal of molecular histology》2011,42(6):575-578
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of alfa-iduronidase (IDUA), which leads to intralysosomal accumulation
of glycosaminoglycans. Some studies have revealed that oxidative stress plays an important role in MPS I. However, the mechanisms
by which these alterations occur are still not fully understood. The aim of this study was to analyze genomic instability
in blood cells from murine model of MPS I by single cell gel (comet) assay and micronucleus test. The results pointed out
genetic damage in blood cells as depicted by the single cell gel (comet) assay results. By contrast, no increase of micronucleated
cells were found in mouse blood cells when compared to negative control. Taken together, our results suggest that IDUA deficiency
induces genomic damage in blood cells. Certainly, this finding offers new insights into the mechanisms underlying the relation
between IDUA deficiency and clinical manifestations that can occur in MPS I patients. 相似文献
6.
Renal failure was diagnosed in an 11-mo-old male domestic shorthair cat from a colony with mucopolysaccharidosis type I lysosomal storage disease. Grossly, the kidneys were enlarged and bulged on cut section. Histology revealed tubular necrosis and regeneration with severe interstitial macrophage accumulation. Tubular epithelial cells and interstitial macrophages were distended by abundant, large cytoplasmic vacuoles. Electron microscopy demonstrated severe tubular epithelial vacuolar degeneration with lysosomes distended by granular debris and mineral precipitates. Interstitial macrophages contained similarly distended lysosomes. Although the initial cause of the tubular injury was not identified, the presence of macrophages laden with storage product most likely exacerbated the disease. The macrophage infiltrate may have caused tubular ischemia by compressing peritubular capillaries and separating tubules from their blood supply. Because the kidney is not normally affected in MPS I, this case is an unusual presentation of a well-characterized disease. Furthermore, this report documents the diagnostic workflow used to investigate a single case of feline acute renal failure in the setting of numerous at-risk laboratory animals. 相似文献
7.
The catabolism of glycosaminoglycans begins with endohydrolysis of polysaccharides to oligosaccharides followed by the sequential action of an array of exoenzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In a lysosomal storage disorder known as mucopolysaccharidosis I, caused by a deficiency of the exohydrolase alpha-l-iduronidase, fragments of two different glycosaminoglycans, dermatan sulfate and heparan sulfate, have been shown to accumulate. Oligosaccharides isolated from the urine of a mucopolysaccharidosis I patient using anion exchange and gel filtration chromatography were identified as di-, tri-, tetra-, penta-, and hexasaccharides using electrospray ionization-tandem mass spectrometry and shown to have nonreducing terminal alpha-l-iduronate residues, susceptible to digestion with alpha-l-iduronidase. The presence of odd and even oligosaccharides suggests both endo-beta-glucuronidase and endo-N-acetylhexosaminidase activities toward both glycosaminoglycans. Cultured skin fibroblasts from mucopolysaccharidosis I patients accumulate the same dermatan sulfate-and heparan sulfate-derived di- and trisaccharides as identified in urine, and supplementation of culture medium with recombinant alpha-l-iduronidase reduced their level to that of unaffected control fibroblasts. A dermatan-derived tetrasaccharide not elevated in mucopolysaccharidosis I fibroblasts transiently increased in these fibroblasts in the presence of recombinant alpha-l-iduronidase, indicating it is an intermediate product of catabolism. These oligosaccharides were elevated in urine samples from mucopolysaccharidosis I patients, and we suggest that these glycosaminoglycan-derived oligosaccharides may be useful biochemical markers for the identification and the clinical management of mucopolysaccharidosis I patients. 相似文献
8.
Paola Di Natale Carmela Di Domenico Guglielmo R D Villani Angelo Lombardo Antonia Follenzi Luigi Naldini 《European journal of biochemistry》2002,269(11):2764-2771
Mucopolysaccharidosis type I (MPS I) results from a deficiency in the enzyme alpha-L-iduronidase (IDUA), and is characterized by skeletal abnormalities, hepatosplenomegaly and neurological dysfunction. In this study, we used a late generation lentiviral vector to evaluate the utility of this vector system for the transfer and expression of the human IDUA cDNA in MPS I fibroblasts. We observed that the level of enzyme expression in transduced cells was 1.5-fold the level found in normal cells; the expression persisted for at least two months. In addition, transduced MPS I fibroblasts were capable of clearing intracellular radiolabeled glycosaminoglycan (GAG). Pulse-chase experiments on transduced fibroblasts showed that the recombinant enzyme was synthesized as a 76-kDa precursor form and processed to a 66-kDa mature form; it was released from transduced cells and was endocytosed into a second population of untreated MPS I fibroblasts via a mannose 6-phosphate receptor. These results suggest that the lentiviral vector may be used for the delivery and expression of the IDUA gene to cells in vivo for treatment of MPS I. 相似文献
9.
To determine the hemodynamic effects of a hypotensive dose of atrial natriuretic factor (ANF), a synthetic peptide containing 26 amino acids of endogenous rat ANF (Arg-Arg-Ser-Ser-Cys-Phe-Gly-Gly-Arg-Ile-Asp-Arg-Ile-Gly-Ala-Gln-Ser-Gly -Leu-Gly-Cys-Asn-Ser-Phe-Arg-Tyr-COOH) was studied in two groups of barbiturate anesthetized rats. In the first experiment, a 20-minute infusion of a hypotensive dose, 95 pmole/min i.v., of the synthetic ANF decreased mean arterial pressure (MAP) by 40 +/- 3 mm Hg from a baseline of 128 +/- 5 mm Hg, and cardiac output (CO) (microsphere method) by 7.8 +/- 1.8 ml/min/100 gm from a baseline of 23.5 +/- 1.3 ml/min/100 gm. Synthetic ANF did not significantly affect the total peripheral resistance (TPR) measured at the end of the 20-minute infusion. Sodium nitroprusside (SNP), infused at an equihypotensive dose of 20 micrograms/kg/min i.v., produced the same hemodynamic profile in seven other animals; in contrast, 0.3 mg/kg i.v. of hydralazine (n = 7) lowered MAP by 56 +/- 6 mm Hg and reduced TPR index by 3.0 +/- 0.6 mm Hg/ml/min/100 gm, but did not change CO. Other than an increase in coronary blood during SNF infusion, there were no significant changes in the distribution of cardiac output. Infusion of the saline vehicle had no significant effects on any of these parameters. The results of the second experiment in anesthetized rats confirmed that hypotensive doses of 40 and 100 pmole/kg/min i.v. lowered CO (dye dilution method) from a baseline of 33 +/- 6 to a minimum of 24 +/- 2 ml/min/100 gm (p less than 0.05) without affecting TPR. In addition, synthetic ANF did not significantly affect heart rate (HR) but it slightly reduced cardiac contractility (dp/dt50). These results suggest that the hypotensive dose of synthetic ANF reduced cardiac output, partially by diminishing stroke volume, and perhaps contractility. 相似文献
10.
11.
Immunoquantification and enzyme kinetics of alpha-L-iduronidase in cultured fibroblasts from normal controls and mucopolysaccharidosis type I patients.
下载免费PDF全文

L J Ashton D A Brooks P A McCourt V J Muller P R Clements J J Hopwood 《American journal of human genetics》1992,50(4):787-794
alpha-L-Iduronidase activity is deficient in mucopolysaccharidosis type I (MPS I; Hurler syndrome, Scheie syndrome) patients and results in the disruption of the sequential degradation of the glycosaminoglycans dermatan sulfate and heparan sulfate. A monoclonal antibody-based immunoquantification assay has been developed for alpha-L-iduronidase, which enables the detection of at least 16 pg alpha-L-iduronidase protein. Cultured human skin fibroblasts from 12 normal controls contained 17-54 ng alpha-L-iduronidase protein/mg extracted cell protein. Fibroblasts from 23 MPS I patients were assayed for alpha-L-iduronidase protein content. Fibroblast extracts from one MPS I patient contained at least six times the level of alpha-L-iduronidase protein for normal controls--but contained no associated enzyme activity--and is proposed to represent a mutation affecting the active site of the enzyme. Fibroblast extracts from 11 MPS I patients contained 0.05-2.03 ng alpha-L-iduronidase protein/mg extracted cell protein, whereas immunodetectable protein could not be detected in the other 11 patients. Four fibroblast extracts with no immunodetectable alpha-L-iduronidase protein had residual alpha-L-iduronidase activity, suggesting that the mutant alpha-L-iduronidase in cultured cells from these MPS I patients has been modified to mask or remove the epitopes detected by two monoclonal antibodies used in the quantification assay. Both the absence of immunoreactivity in a mild MPS I patient and high protein level in a severe MPS I patient present limitations to the use of immunoquantification analysis as a sole measure of patient phenotype. Enzyme kinetic analysis of alpha-L-iduronidase from MPS I fibroblasts revealed a number of patients with either abnormal substrate binding or catalytic activity.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
13.
Baldo G Mayer FQ Martinelli B Meyer FS Burin M Meurer L Tavares AM Giugliani R Matte U 《Cytotherapy》2012,14(7):860-867
Background aimsMucopolysaccharidosis type I (MPS I) is characterized by deficiency of the enzyme alpha-l-iduronidase (IDUA) and storage of glycosaminoglycans (GAG) in several tissues. Current available treatments present limitations, thus the search for new therapies. Encapsulation of recombinant cells within polymeric structures combines gene and cell therapy and is a promising approach for treating MPS I.MethodsWe produced alginate microcapsules containing baby hamster kidney (BHK) cells overexpressing IDUA and implanted these capsules in the peritoneum of MPS I mice.ResultsAn increase in serum and tissue IDUA activity was observed at early time-points, as well as a reduction in GAG storage; however, correction in the long term was only partially achieved, with a drop in the IDUA activity being observed a few weeks after the implant. Analysis of the capsules obtained from the peritoneum revealed inflammation and a pericapsular fibrotic process, which could be responsible for the reduction in IDUA levels observed in the long term. In addition, treated mice developed antibodies against the enzyme.ConclusionsThe results suggest that the encapsulation process is effective in the short term but improvements must be achieved in order to reduce the immune response and reach a stable correction. 相似文献
14.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. 相似文献
15.
Genetic linkage and heterogeneity in type I Charcot-Marie-Tooth disease (hereditary motor and sensory neuropathy type I). 总被引:6,自引:4,他引:6
下载免费PDF全文

P F Chance T D Bird P O''''Connell H Lipe J M Lalouel M Leppert 《American journal of human genetics》1990,47(6):915-925
The segregation patterns of DNA markers from the pericentromeric regions of chromosomes 1 and 17 were studied in seven pedigrees segregating an autosomal dominant gene for Charcot-Marie-Tooth neuropathy type I (CMT I; hereditary motor and sensory neuropathy I). A multilocus analysis with four markers (pMCR-3, pMUC10, FY, and pMLAJ1) spanning the pericentromeric region of chromosome 1 excluded the CMT I gene from this region in six pedigrees but gave some evidence for linkage to the region of Duffy in one pedigree. Linkage of the CMT I gene to markers in the pericentromeric region of chromosome 17 (markers pA10-41, pEW301, p3.6, and pTH17.19) was established; however, in these seven pedigrees homogeneity analysis with chromosome 17 markers detected significant genetic heterogeneity. This analysis suggested that three of the seven pedigrees are not linked to this same region. Overall, two of the seven CMT I pedigrees were not linked to markers tested from chromosomes 1 or 17. These results confirm genetic heterogeneity in CMT I and implicate the existence of a third autosomal locus, in addition to a locus on chromosome 17, and a probable locus on chromosome 1. This evidence of etiological heterogeneity, supported by statistical tests, will have to be taken into consideration when fine-structure genetic maps of the regions around CMT I are constructed. 相似文献
16.
Identification of the gene encoding the enzyme deficient in mucopolysaccharidosis IIIC (Sanfilippo disease type C)
下载免费PDF全文

Fan X Zhang H Zhang S Bagshaw RD Tropak MB Callahan JW Mahuran DJ 《American journal of human genetics》2006,79(4):738-744
Mucopolysaccharidosis IIIC (MPS IIIC), or Sanfilippo C, represents the only MPS disorder in which the responsible gene has not been identified; however, the gene has been localized to the pericentromeric region of chromosome 8. In an ongoing proteomics study of mouse lysosomal membrane proteins, we identified an unknown protein whose human homolog, TMEM76, was encoded by a gene that maps to 8p11.1. A full-length mouse expressed sequence tag was expressed in human MPS IIIC fibroblasts, and its protein product localized to the lysosome and corrected the enzymatic defect. The mouse sequence was used to identify the full-length human homolog (HGSNAT), which encodes a protein with no homology to other proteins of known function but is highly conserved among plants and bacteria. Mutational analyses of two MPS IIIC cell lines identified a splice-junction mutation that accounted for three mutant alleles, and a single base-pair insertion accounted for the fourth. 相似文献
17.
Fernando Kreutz Fernanda dos Santos Petry Melissa Camassola Vanessa Schein Fátima C.R. Guma Nance Beyer Nardi Vera Maria Treis Trindade 《Gene》2013
Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform–methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation. 相似文献
18.
Galli-Tsinopoulou A Nousia-Arvanitakis S Dracoulacos D Xefteri M Karamouzis M 《Hormone research》1999,52(3):119-124
Celiac disease (CD) and diabetes mellitus type I (DM-I) are both autoimmune diseases. Abnormal first-phase insulin response (FPIR) is associated with the prediabetic phase. Glutamic acid decarboxylase (GAD) and islet cell antibodies (ICAs) - especially the tyrosine phosphatase-like protein IA-2 antibodies - are considered to be serological markers of DM-I future development. The aim of this study is to investigate the presence of autoantibodies (GAD, IA-2) in individuals with CD, on a gluten-free diet, who have normal intestinal morphology. Thirty patients with CD (4-22, mean 15 years), 30 newly diagnosed diabetic children (2.5-16, mean 10 years) and 30 healthy subjects (7-35, mean 18 years) were investigated. Serum GAD and IA-2 autoantibodies were assessed by a quantitative enzyme-linked immunosorbent assay (ELISA) method in all patients and controls. Seven CD patients (23%), 28 diabetic children (93%) and none in the control group had positive GAD and IA-2 antibodies. The FPIR was normal in CD patients (>/=46 mU/l). Conclusions: GAD and IA-2 antibodies are detected in 23% of patients with CD. These patients may be at risk to develop DM-I. Regular follow-up and determination of FPIR for the early diagnosis of the prediabetic phase in patients with CD having circulating autoantibodies is recommended. 相似文献
19.
20.
T K Peng 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1988,12(1):21-26
Serum IgG antibodies to collagen were investigated by using enzyme linked immunosorbent assay (ELISA) in patients with chronic periodontal disease. Patients with varying forms of periodontal disease including gingivitis, juvenile periodontitis, and adult periodontitis were compared with the normal subjects. The mean serum IgG levels of ELISA antibodies to native type I or III collagen in patients with juvenile periodontitis were significantly higher than those of the normal subjects, but no difference was found between the patients with either gingivitis or adult periodontitis and the normal subjects. In addition, the mean serum IgG levels of ELISA antibodies to denatured type I or III collagen in patients with juvenile or adult periodontitis were significantly higher than those of the normal subjects. These findings suggest that antibodies to native and denatured type I or III collagen may be associated with different forms or severities of periodontal disease, especially advanced periodontal destruction. 相似文献