首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou X  Jin X  Medhekar R  Chen X  Dieckmann T  Toney MD 《Biochemistry》2001,40(5):1367-1377
The two half-reactions of the pyridoxal 5'-phosphate (PLP)-dependent enzyme dialkylglycine decarboxylase (DGD) were studied individually by multiwavelength stopped-flow spectroscopy. Biphasic behavior was found for the reactions of DGD-PLP, consistent with two coexisting conformations observed in steady-state kinetics [Zhou, X., and Toney, M. D. (1998) Biochemistry 37, 5761--5769]. The half-reaction kinetic parameters depend on alkali metal ion size in a manner similar to that observed for steady-state kinetic parameters. The fast phase maximal rate constant for the 2-aminoisobutyrate (AIB) decarboxylation half-reaction with the potassium form of DGD-PLP is 25 s(-1), while that for the transamination half-reaction between DGD-PMP and pyruvate is 75 s(-1). The maximal rate constant for the transamination half-reaction of the potassium form of DGD-PLP with L-alanine is 24 s(-1). The spectral data indicate that external aldimine formation with either AIB or L-alanine and DGD-PLP is a rapid equilibrium process, as is ketimine formation from DGD-PMP and pyruvate. Absorption ascribable to the quinonoid intermediate is not observed in the AIB decarboxylation half-reaction, but is observed in the dead-time of the stopped-flow in the L-alanine transamination half-reaction. The [1-(13)C]AIB kinetic isotope effect (KIE) on k(cat) for the steady-state reaction is 1.043 +/- 0.003, while a value of 1.042 +/- 0.009 was measured for the AIB half-reaction. The secondary KIE measured for the AIB decarboxylation half-reaction with [C4'-(2)H]PLP is 0.92 +/- 0.02. The primary [2-(2)H]-L-alanine KIE on the transamination half-reaction is unity. Small but significant solvent KIEs are observed on k(cat) and k(cat)/K(M) for both substrates, and the proton inventories are linear in each case. NMR measurements of C2--H washout vs product formation give ratios of 105 and 14 with L-alanine and isopropylamine as substrates, respectively. These results support a rate-limiting, concerted C alpha-decarboxylation/C4'-protonation mechanism for the AIB decarboxylation reaction, and rapid equilibrium quinonoid formation followed by rate-limiting protonation to the ketimine intermediate for the L-alanine transamination half-reaction. Energy profiles for the two half-reactions are constructed.  相似文献   

2.
3.
Eubanks LM  Poulter CD 《Biochemistry》2003,42(4):1140-1149
1-Deoxy-d-xylulose 5-phosphate synthase (DXP synthase) catalyzes the thiamine diphosphate (TPP)-dependent condensation of pyruvate and d-glyceraldehyde 3-phosphate (GAP) to yield DXP in the first step of the methylerythritol phosphate pathway for isoprenoid biosynthesis. Steady-state kinetic constants for DXP synthase calculated from the initial velocities measured at varying concentrations of substrates were as follows: k(cat) = 1.9 +/- 0.1 s(-1), K(m)(GAP) = 0.068 +/- 0.001 mM, and K(m)(pyruvate) = 0.44 +/- 0.05 mM for pyruvate and GAP; k(cat) = 1.7 +/- 0.1 s(-1), K(m)(d-glyceraldehyde) = 33 +/- 3 mM, and K(m)(pyruvate) = 1.9 +/- 0.5 mM for d-glyceraldehyde and pyruvate. beta-Fluoropyruvate was investigated as a dead-end inhibitor for pyruvate. Double-reciprocal plots showed a competitive inhibition pattern with respect to pyruvate and noncompetitive inhibition with respect to GAP/d-glyceraldehyde. (14)CO(2) trapping experiments demonstrated that the binding of both substrates (pyruvate and GAP/d-glyceraldehyde) is required for the formation of a catalytically competent enzyme-substrate complex. These results are consistent with an ordered mechanism for DXP synthase where pyruvate binds before GAP/d-glyceraldehyde.  相似文献   

4.
1. A reversible transamination reaction between L-glutamate and pyruvate, or L-alanine and 2-oxoglutarate, takes place in the mitochondrial and cell sap fractions of rat brain. 2. The maximum rate of the transamination reaction in both subfractions was observed in the presence of a keto- substrate concentration of 2.5 mM only, but an amino- donor concentration of 20 mM. 3. The apparent Menten-Michaelis constants for pyruvate and 2-oxoglutarate were of a 10(-4) M and for L-glutamate and L-alanine of a 10(-3) M order and were approximately the same for both fractions. 4. The ratio of the initial rate of the L-alanine + 2-oxoglutarate to the L-glutamate + pyruvate transamination reaction in the cell sap and mitochondrial fractions amounted to up to 2. 5. The apparent equilibrium constant derived from the Haldane equation was 7.01 for cell sap alanine aminotransferase and 4 for the mitochondrial enzyme. 6. Increasing pyridoxal-5'-phosphate concentrations in the incubation medium were accompanied by only non-significant stimulation of alanine aminotransferase activity in the mitochondrial and cell sap fractions. 7. A comparison of the kinetic data obtained on mitochondrial and cell sap alanine aminotransferases in vitro with the actual substrate concentrations in the transamination reaction in nervous tissue in vivo indicates that the direction of the transamination reaction in situ seems to be determined simply by compartmentation and by dynamic changes in amino- and keto- substrates in the mitochondrial and cell sap spaces.  相似文献   

5.
The pyruvate dehydrogenase (E1) component of the pyruvate dehydrogenase complex (PDC) catalyzes a two-step reaction. Recombinant production of substrate amounts of the lipoyl domains of the dihydrolipoyl transacetylase (E2) component of the mammalian PDC allowed kinetic characterization of the rapid physiological reaction catalyzed by E1. Using either the N-terminal (L1) or the internal (L2) lipoyl domain of E2 as a substrate, analyses of steady state kinetic data support a ping pong mechanism. Using standard E1 preparations, Michaelis constants (Km) were 52 +/- 14 microM for L1 and 24.8 +/- 3.8 microM for pyruvate and k(cat) was 26.3 s(-1). With less common, higher activity preparations of E1, the Km values were > or =160 microM for L1 and > or =35 microM for pyruvate and k(cat) was > or =70 s(-1). Similar results were found with the L2 domain. The best synthetic lipoylated-peptide (L2 residues 163-177) was a much poorer substrate (Km > or =15 mM, k(cat) approximately equals 5 s(-1); k(cat)/Km decreased >1,500-fold) than L1 or L2, but a far better substrate in the E1 reaction than free lipoamide (k(cat)/Km increased >500-fold). Each lipoate source was an effective substrate in the dihydrolipoyl dehydrogenase (E3) reaction, but E3 had a lower Km for the L2 domain than for lipoamide or the lipoylated peptides. In contrast to measurements with slow E1 model reactions that use artificial acceptors, we confirmed that the natural E1 reaction, using lipoyl domain acceptors, was completely inhibited (>99%) by phosphorylation of E1 and the phosphorylation strongly inhibited the reverse of the second step catalyzed by E1. The mechanisms by which phosphorylation interferes with E1 activity is interpreted based on accrued results and the location of phosphorylation sites mapped onto the 3-D structure of related alpha-keto acid dehydrogenases.  相似文献   

6.
Pyridoxal 5'-phosphate-dependent cystalysin from Treponema denticola catalyzes the beta-displacement of the beta-substituent from both L-aspartate and L-cysteine sulfinic acid. The steady-state kinetic parameters for beta-desulfination of L-cysteine sulfinic acid, k(cat) and K(m), are 89+/-7 s(-1) and 49+/-9 mM, respectively, whereas those for beta-decarboxylation of L-aspartate are 0.8+/-0.1 s(-1) and 280+/-70 mM. Moreover, cystalysin in the pyridoxamine 5'-phosphate form has also been found to catalyze beta-decarboxylation of oxalacetate as shown by consumption of oxalacetate and a concomitant production of pyruvate. The k(cat) and K(m) of this reaction are 0.15+/-0.01 s(-1) and 13+/-2 mM, respectively. Possible mechanistic and physiological implications are discussed.  相似文献   

7.
Aminotransferases (ATs) interacting with L-alanine are the least studied bacterial ATs. Whereas AlaT converts pyruvate to L-alanine in a glutamate-dependent reaction, AvtA is able to convert pyruvate to L-alanine in an L-valine-dependent manner. We show here that the wild type of Corynebacterium glutamicum with a deletion of either of the corresponding genes does not exhibit an explicit growth deficiency. However, a double mutant was auxotrophic for L-alanine, showing that both ATs can provide L-alanine and that they are the only ATs involved. Kinetic studies with isolated enzymes demonstrate that the catalytic efficiency, k(cat)/K(m), of AlaT is higher than 1 order of magnitude in the direction of L-alanine formation (3.5 x 10(4) M(-1) s(-1)), but no preference was apparent for AvtA, suggesting that AlaT is the principal L-alanine-supplying enzyme. This is in line with the cytosolic L-alanine concentration, which is reduced in the exponential growth phase from 95 mM to 18 mM by a deletion of alaT, whereas avtA deletion decreases the L-alanine concentration only to 76 mM. The combined data show that the presence of both ATs has subtle but obvious consequences on balancing intracellular amino acid pools in the wild type. The consequences are more obvious in an L-valine production strain where a high intracellular drain-off of the L-alanine precursor pyruvate prevails. We therefore used deletion of alaT to successfully reduce the contaminating L-alanine in extracellular accumulated L-valine by 80%.  相似文献   

8.
The 2-aminoethylphosphonate transaminase (AEPT; the phnW gene product) of the Salmonella enterica serovar Typhimurium 2-aminoethylphosphonate (AEP) degradation pathway catalyzes the reversible reaction of AEP and pyruvate to form phosphonoacetaldehyde (P-Ald) and L-alanine (L-Ala). Here, we describe the purification and characterization of recombinant AEPT. pH rate profiles (log V(m) and log V(m)/K(m) versus pH) revealed a pH optimum of 8.5. At pH 8.5, K(eq) is equal to 0.5 and the k(cat) values of the forward and reverse reactions are 7 and 9 s(-1), respectively. The K(m) for AEP is 1.11 +/- 0.03 mM; for pyruvate it is 0.15 +/- 0.02 mM, for P-Ald it is 0.09 +/- 0.01 mM, and for L-Ala it is 1.4 +/- 0.03 mM. Substrate specificity tests revealed a high degree of discrimination, indicating a singular physiological role for the transaminase in AEP degradation. The 40-kDa subunit of the homodimeric enzyme is homologous to other members of the pyridoxalphosphate-dependent amino acid transaminase superfamily. Catalytic residues conserved within well-characterized members are also conserved within the seven known AEPT sequences. Site-directed mutagenesis demonstrated the importance of three selected residues (Asp168, Lys194, and Arg340) in AEPT catalysis.  相似文献   

9.
An enzyme which catalyzes the transamination of L-alanine with 2-oxoglutarate has been purified 157-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. The enzyme showed maximal activity at pH 7.3 and 50 degrees C, has an apparent molecular mass of 105 kDa as estimated by gel filtration, and consists of two identical subunits of 45 kDa each as deduced from PAGE/SDS studies. A stoichiometry of two moles pyridoxal 5-phosphate/mole enzyme was calculated. The enzyme has an isoelectric point of 8.3 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-alanine. Pyridoxal 5-phosphate protected activity against heat inactivation and, to a minor extent, L-alanine and 2-oxoglutarate, but not L-glutamate. Spectral data and activity inhibition and protection studies strongly support the involvement of pyridoxal 5-phosphate in enzyme catalysis through a Schiff's base formation. The purified enzyme was able to transaminate only L-alanine and L-glutamate with glyoxylate out of ten amino acids tested. L-Alanine aminotransferase exhibited hyperbolic kinetic for 2-oxoglutarate, pyruvate, and L-glutamate, and nonhyperbolic behaviour for L-alanine. Apparent Km values were 0.054 mM for 2-oxoglutarate, 0.52 for L-glutamate, 0.24 mM for pyruvate, and 2.7 mM for L-alanine. Transamination of L-alanine in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

10.
The Mycobacterium tuberculosis gene Rv2747 encodes a novel 19-kDa ArgA that catalyzes the initial step in L-arginine biosynthesis, namely the conversion of L-glutamate to alpha-N-acetyl-L-glutamate. Initial velocity studies reveal that Rv2747 proceeds through a sequential kinetic mechanism, with K(m) values of 280 mM for L-glutamine and 150 microM for acetyl-coenzyme A and with a k(cat) value of 200 min(-1). Initial velocity studies with L-glutamate showed that even at concentrations of 600 mM, saturation was not observed. Therefore, only a k(cat)/K(m) value of 125 M(-1) min(-1) can be calculated. Inhibition studies reveal that the enzyme is strongly regulated by L-arginine, the end product of the pathway (50% inhibitory concentration, 26 microM). The enzyme was completely inhibited by 500 microM arginine, with a Hill coefficient of 0.60, indicating negatively cooperative binding of L-arginine.  相似文献   

11.
D-Arginine dehydrogenase activity was discovered in Pseudomonas aeruginosa. This enzyme was inducible by its substrate, D-arginine, as well as by its product, 2-ketoarginine, but not by L-arginine. The enzyme activity was measured in vitro, in the presence of artificial electron acceptore (phenazine methosulphate and iodonitrotetrazolium chloride). 2-ketoarginine was catabolized further to 4-guanidinobutyraldehyde, 4-guanidinobutyrate and 4-aminobutyrate. Two enzymes involved, 4-guanidinobutyraldehyde dehydrogenase and guanidinobutyrase, were inducible by 2-ketoarginine; the latter enzyme was also strongly induced by 4-guanidinobutyrate. An arginine racemase activity was detected by an invivo test. E-Arginine had the potential to be catabolized via the D-arginine dehydrogenase pathway and, after racemization, via the three L-arginine catabolic pathyways previously demonstrated in P. aeruginosa. In mutants blocked in the L-arginine succinyltransferase pathway, but no in the wild-type, L-arginine was channelled partially into the D-arginine dehydrogenase pathway. Mutations in the kauB locus abolished growth of P. aeruginosa on 2-ketoarginine, agmatine and putrescine, and led to loss of 4-guanidinobutyraldehyde dehydrogenase and 4-aminobutyaldehyde dehydrogenase activites. Thus, these two activites appear to be due to one enzyme in P. aeruginosa. The kauB locus was mapped on the chromosome between lysA and argB and was not linked to known genes involved in the three L-arginine catabolic pathways. The existence of four arginine catabolic pathways illustrates the metabolic versatility of P. aeruginosa.  相似文献   

12.
The functional role of the highly conserved active site Arg 59 in the prototype of the gamma-class carbonic anhydrase Cam (carbonic anhydrase from Methanosarcina thermophila) was investigated. Variants (R59A, -C, -E, -H, -K, -M, and -Q) were prepared by site-directed mutagenesis and characterized by size exclusion chromatography (SEC), circular dichroism (CD) spectroscopy, and stopped-flow kinetic analyses. CD spectra indicated similar secondary structures for the wild type and the R59A and -K variants, independent of nondenaturing concentrations of guanidine hydrochloride (GdnHCl). SEC indicated that all variants purified as homotrimers like the wild type. SEC also revealed that the R59A and -K variants unfolded at > or = 1.5 M GdnHCl, compared to 3.0 M GdnHCl for the wild type. These results indicate that Arg 59 contributes to the thermodynamic stability of the Cam trimer. The R59K variant had k(cat) and k(cat)/K(m) values that were 8 and 5% of the wild-type values, respectively, while all other variants had k(cat) and k(cat)/K(m) values 10-100-fold lower than those of the wild type. The R59A, -C, -E, -M, and -Q variants exhibited 4-63-fold increases in k(cat) and 9-120-fold increases in k(cat)/K(m) upon addition of 100 mM GdnHCl, with the largest increases observed for the R59A variant, which was comparable to the R59K variant. The kinetic results indicate that a positive charge at position 59 is essential for the CO(2) hydration step of the overall catalytic mechanism.  相似文献   

13.
We describe here a new enzyme-coupled assay for the quantitation of d-xylose using readily available enzymes that allows kinetic evaluation of hemicellulolytic enzymes using natural xylooligosaccharide substrates. Hydrogen peroxide is generated as an intermediary analyte, which allows flexibility in the choice of the chromophore or fluorophore used as the final reporter. Thus, we present d-xylose quantitation results for solution-phase assays performed with both the fluorescent reporter resorufin, generated from N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), whose corresponding radical cation has an absorbance maximum at approximately 400 nm. We also describe a useful solid-phase variation of the assay performed with the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride, which produces an insoluble brown precipitate. In addition, kinetic parameters for hydrolysis of the natural substrates xylobiose and xylotriose were obtained using this assay for a glycosyl hydrolase family 39 beta-xylosidase from Thermoanaerobacterium sp. strain JW/SL YS485 (Swiss-Prot accession no. O30360). At higher xylobiose substrate concentrations the enzyme showed an increase in the rate indicative of transglycosylation, while for xylotriose marked substrate inhibition was observed. At lower xylobiose concentrations k(cat) was 2.7 +/- 0.4 s(-1), K(m) was 3.3 +/- 0.7 mM, and k(cat)/K(m) was 0.82 +/- 0.21 mM(-1) . s(-1). Nonlinear curve fitting to a substrate inhibition model showed that for xylotriose K(i) was 1.7 +/- 0.1 mM, k(cat) was 2.0 +/- 0.1 s(-1), K(m) was 0.144 +/- 0.011 mM, and k(cat)/K(m) was 14 +/- 1.3 mM(-1) . s(-1).  相似文献   

14.
The conjoint substitution of three active-site residues in aspartate aminotransferase (AspAT) of Escherichia coli (Y225R/R292K/R386A) increases the ratio of L-aspartate beta-decarboxylase activity to transaminase activity >25 million-fold. This result was achieved by combining an arginine shift mutation (Y225R/R386A) with a conservative substitution of a substrate-binding residue (R292K). In the wild-type enzyme, Arg(386) interacts with the alpha-carboxylate group of the substrate and is one of the four residues that are invariant in all aminotransferases; Tyr(225) is in its vicinity, forming a hydrogen bond with O-3' of the cofactor; and Arg(292) interacts with the distal carboxylate group of the substrate. In the triple-mutant enzyme, k(cat)' for beta-decarboxylation of L-aspartate was 0.08 s(-1), whereas k(cat)' for transamination was decreased to 0.01 s(-1). AspAT was thus converted into an L-aspartate beta-decarboxylase that catalyzes transamination as a side reaction. The major pathway of beta-decarboxylation directly produces L-alanine without intermediary formation of pyruvate. The various single- or double-mutant AspATs corresponding to the triple-mutant enzyme showed, with the exception of AspAT Y225R/R386A, no measurable or only very low beta-decarboxylase activity. The arginine shift mutation Y225R/R386A elicits beta-decarboxylase activity, whereas the R292K substitution suppresses transaminase activity. The reaction specificity of the triple-mutant enzyme is thus achieved in the same way as that of wild-type pyridoxal 5'-phosphate-dependent enzymes in general and possibly of many other enzymes, i.e. by accelerating the specific reaction and suppressing potential side reactions.  相似文献   

15.
The characteristics of L-lysine transport were investigated at brush-border (maternal) and basal (fetal) sides of the syncytiotrophoblast in the term guinea-pig placenta artificially perfused either through the umbilical vessels in situ or through both circulations simultaneously. Cellular uptake, efflux and transplacental transfer were determined using a single-circulation paired-tracer dilution technique. Unidirectional L-[3H]lysine uptake (%) (perfusate lysine 50 microM) was high on maternal (M = 87 +/- 1) and fetal (F = 73 +/- 2) sides. L-[3H]Lysine efflux back into the ipsilateral circulation was asymmetrical (F/M ratio = 2.3) and transplacental flux occurred in favour of the fetal circulation. Unidirectional lysine influx kinetics (0.05-8.00 mM) gave Km values of 1.75 +/- 0.70 mM and 0.90 +/- 0.25 mM at maternal and fetal sides, respectively; corresponding Vmax values were 1.95 +/- 0.38 and 0.87 +/- 0.10 mumol.min-1.g-1. At both sides, lysine influx (50 microM) could be inhibited (about 60-80%) by 4 mM L-lysine and L-ornithine and less effectively (about 10-40%) by L-citrulline, L-arginine, D-lysine and L-histidine. At the basal side: (i) lysine influx kinetics were greatly modified in the presence of 10 mM L-alanine (Km = 6.25 +/- 3.27 mM; Vmax = 2.62 +/- 0.94 mumol.min-1.g-1), but unchanged by equimolar L-phenylalanine or L-tryptophan; (ii) in the converse experiments, lysine (10 mM) did not affect the kinetic characteristics for either L-alanine or L-phenylalanine; (iii) L-lysine and L-alanine influx kinetics were not dependent on the sodium gradient; (iv) the inhibition of L-[3H]lysine uptake by 4 mM L-homoserine was partially (60%) Na+-dependent. At the maternal side the kinetic characteristics for alanine influx were highly Na+-dependent, while lysine influx was partially Na+-dependent only at low concentrations (0.05-0.5 mM). Bilateral perfusion with 2,4-dinitrophenol (1 mM) reduced L-[3H]lysine uptake into the trophoblast and abolished transplacental transfer. It is suggested that lysine transport in the guinea-pig placenta is mediated by a specific transport system (y+) for cationic amino-acids. The asymmetry in the degree of sodium-dependency at both trophoblast membranes may in part explain the maternal-to-foetal polarity of placental amino-acid transfer in vivo.  相似文献   

16.
Amino acid transport in horse erythrocytes is regulated by three co-dominant allelomorphic genes coding for high-affinity transport activity (system asc1), low-affinity transport activity (system asc2) and transport-deficiency, respectively. The asc systems are selective for neutral amino acids of intermediate size, but unlike conventional system ASC, do not require Na+ for activity. In the present series of experiments we have used a combined kinetic and genetic approach to establish that dibasic amino acids are also asc substrates, systems asc1 and asc2 representing the only mediated routes of cationic amino acid transport in horse erythrocytes. Both transporters were found to exhibit a strong preference for dibasic amino acids compared with neutral amino acids of similar size. Apparent Km values (mM) for influx via system asc1 were L-lysine (9), L-ornithine (27), L-arginine (27), L-alanine (0.35). Corresponding Vmax estimates (mmol/l cells per h, 37 degrees C) were L-lysine (1.65), L-ornithine (2.15), L-arginine (0.54), L-alanine (1.69). Apparent Km values for L-lysine and L-ornithine influx via system asc2 were approximately 90 and greater than 100 mM, respectively, with Vmax values greater than 2 and greater than 1 mmol/l cells per h, respectively. Apparent Km and Vmax values for L-alanine uptake by system asc2 were 14 mM and 6.90 mmol/l cells per h. In contrast, L-arginine was transported by system asc2 with the same apparent Km as L-alanine (14 mM), but with a 77-fold lower Vmax. This dibasic amino acid was shown to cause cis- and trans-inhibition of system asc2 in a manner analogous to its interaction with system ASC, where the side-chain guanidinium group is considered to occupy the Na+-binding site on the transporter. Concentrations of extracellular L-arginine causing 50% inhibition of zero-trans L-alanine influx and half-maximum inhibition of L-alanine zero-trans efflux were 14 mM (extracellular L-alanine concentration 15 mM) and 3 mM (intracellular L-alanine concentration 15.5 mM), respectively. We interpret these observations as evidence of structural homology between the horse erythrocyte asc transporters and system ASC. Physiologically, intracellular L-arginine may function as an endogenous inhibitor of system asc2 activity.  相似文献   

17.
A simple and direct assay method for glucose oxidase (EC 1.1.3.4) from Aspergillus niger and Penicillium amagasakiense was investigated by Fourier transform infrared spectroscopy. This enzyme catalyzed the oxidation of d-glucose at carbon 1 into d-glucono-1,5-lactone and hydrogen peroxide in phosphate buffer in deuterium oxide ((2)H(2)O). The intensity of the d-glucono-1,5-lactone band maximum at 1212 cm(-1) due to CO stretching vibration was measured as a function of time to study the kinetics of d-glucose oxidation. The extinction coefficient epsilon of d-glucono-1,5-lactone was determined to be 1.28 mM(-1)cm(-1). The initial velocity is proportional to the enzyme concentration by using glucose oxidase from both A. niger and P. amagasakiense either as cell-free extracts or as purified enzyme preparations. The kinetic constants (V(max), K(m), k(cat), and k(cat)/K(m)) determined by Lineweaver-Burk plot were 433.78+/-59.87U mg(-1) protein, 10.07+/-1.75 mM, 1095.07+/-151.19s(-1), and 108.74 s(-1)mM(-1), respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on horseradish peroxidase in aqueous media: 470.36+/-42.83U mg(-1) protein, 6.47+/-0.85 mM, 1187.77+/-108.16s(-1), and 183.58 s(-1)mM(-1) for V(max), K(m), k(cat), and k(cat)/K(m), respectively. Therefore, this spectroscopic method is highly suited to assay for glucose oxidase activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of glucose oxidase activity.  相似文献   

18.
Glutamate:glyoxylate aminotransferase from green parts of 7-day-old rye seedlings was purified almost to homogeneity. Specific activity of the purified enzyme measured with L-glutamate and glyoxylate as substrates, was 46.1 units/mg. The enzyme activity with L-alanine and 2-oxoglutarate as substrates was higher by a factor of 1.5, whereas with L-alanine and glyoxylate or L-glutamate and pyruvate it was similar to that with L-glutamate and glyoxylate. L-Aspartate, L-arginine and L-ornithine could also serve as substrate. The reaction followed the Ping-Pong Bi Bi mechanism and Km values for L-glutamate and glyoxylate were 2.6 and 0.5 mM, respectively. Pyridoxal phosphate was found to be the coenzyme of glutamate-glyoxylate aminotransferase. This coenzyme was rather tightly bound with the enzyme protein, as the attempts at its complete resolution from the apoenzyme were unsuccessful. Pyridoxal phosphate, 2-mercaptoethanol and sucrose, or bovine serum albumin stabilized the enzyme. Molecular weight of glutamate:glyoxylate aminotransferase from rye seedlings, determined by SDS-polyacrylamide gel electrophoresis, was 58,800 +/- 2,100, whereas molecular sieving on Sephacryl S-200 gel gave values of 70,800 +/- 700 or 61,400. Similar values obtained for the denatured and nondenatured enzyme seem to indicate that it is a monomeric protein.  相似文献   

19.
Glutamate 47 is conserved in 1-aminocyclopropane-1-carboxylate (ACC) synthases and is positioned near the sulfonium pole of (S,S)-S-adenosyl-L-methionine (SAM) in the modeled pyridoxal phosphate quinonoid complex with SAM. E47Q and E47D constructs of ACC synthase were made to investigate a putative ionic interaction between Glu47 and SAM. The k(cat)/K(m) values for the conversion of (S,S)-SAM to ACC and methylthioadenosine (MTA) are depressed 630- and 25-fold for the E47Q and E47D enzymes, respectively. The decreases in the specificity constants are due to reductions in k(cat) for both mutant enzymes, and a 5-fold increase in K(m) for the E47Q enzyme. Importantly, much smaller effects were observed for the kinetic parameters of reactions with the alternate substrates L-vinylglycine (L-VG) (deamination to form alpha-ketobutyrate and ammonia) and L-alanine (transamination to form pyruvate), which have uncharged side chains. L-VG is both a substrate and a mechanism-based inactivator of the enzyme [Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444], but the partition ratio, k(cat)/k(inact), is unaffected by the Glu47 mutations. ACC synthase primarily catalyzes the beta,gamma-elimination of MTA from the (R,S) diastereomer of SAM to produce L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112], but catalyzes the formation of ACC to a lesser extent via alpha,gamma-elimination of MTA. The partition ratios for (alpha,gamma/beta,gamma)-elimination on (R,S)-SAM are 0.4, < or =0.014, and < or =0.08 for the wild-type, E47Q, and E47D enzymes, respectively. The results of these experiments strongly support a role for Glu47 as an anchor for the sulfonium pole of (S,S)-SAM, and consequently a role as an active site determinant of reaction specificity.  相似文献   

20.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号