首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neotropical moth tribe Josiini (Notodontidae: Dioptinae) contains over 100 described species in 11 genera. All are diurnal, with brightly-coloured, presumably aposematic wing patterns. Larval hostplants are exclusively in the genus Passiflora (Passifloraceae) except for two new records, reported here, from Tumera (Turneraceae). A comparative morphological study of 26 representative josiine species yielded 86 characters from adults, larvae and pupae, all of which are figured and discussed. Phylogenetic analysis of these data produced a single most-parsimonious cladogram. According to the phylogenetic results: (1) monophyly of the Josiini is strongly supported; (2) the currently accepted generic classification is in disarray; (3) morphological character variation is extensive, and adult traits reflect phylogeny more effectively than do those of immature stages; (4) wing pattern types have undergone convergent evolution. A rare phenotype, longitudinal wing stripes, appears in two widely divergent clades, suggesting the evolution of Miillerian mimicry within the Josiini.  相似文献   

2.
Phymaturus comprises 44 species mainly distributed along the south‐west of South America on both sides of the Andes. In this study we present a phylogenetic analysis of Phymaturus of the palluma group, one of its two large clades, including almost all described species. This analysis duplicates the number of in‐group taxa compared with previous contributions. We performed a total‐evidence analysis, combining molecular and morphological characters: sequencing fragments of cytochome b (cytb), 12S, and ND4, for all terminals; describing 45 new morphological characters; and incorporating all DNA sequences available from GenBank. Separate analyses of morphology and DNA partitions are presented and discussed in detail. Seven subclades are recognized here. We named three new subclades and redefined another, found to be paraphyletic. In order to recognize lineages within the traditional Phymaturus palluma group we proposed to treat it as a natural group, containing within it the ranks of clade, subclade, and lineages, respectively. The palluma group is composed by the vociferator and the bibronii clades. The vociferator clade, composed of Chilean and Argentinean species, would be the most basal in the group. Within the bibronii clade, the roigorum subclade includes the Phymaturus verdugo lineage, whereas the mallimaccii subclade would consist of 13 terminal taxa, for which three Chilean species have been added. In this study, morphological apomorphies are identified for all clades and the evolution of ‘male head melanism’ is discussed. © 2015 The Linnean Society of London  相似文献   

3.
Evidence from DNA sequences on the phylogenetic systematics of primates is congruent with the evidence from morphology in grouping Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) into Catarrhini, Catarrhini and Platyrrhini (ceboids or New World monkeys) into Anthropoidea, Lemuriformes and Lorisiformes into Strepsirhini, and Anthropoidea, Tarsioidea, and Strepsirhini into Primates. With regard to the problematic relationships of Tarsioidea, DNA sequences group it with Anthropoidea into Haplorhini. In addition, the DNA evidence favors retaining Cheirogaleidae within Lemuriformes in contrast to some morphological studies that favor placing Cheirogaleids in Lorisiformes. While parsimony analysis of the present DNA sequence data provides only modest support for Haplorhini as a monophyletic taxon, it provides very strong support for Hominoidea, Catarrhini, Anthropoidea, and Strepsirhini as monophyletic taxa. The parsimony DNA evidence also rejects the hypothesis that megabats are the sister group of either Primates or Dermoptera (flying lemur) or a Primate-Dermoptera clade and instead strongly supports the monophyly of Chiroptera, with megabats grouping with microbats at considerable distance from Primates. In contrast to the confused morphological picture of sister group relationships within Hominoidea, orthologous noncoding DNA sequences (spanning alignments involving as many as 20,000 base positions) now provide by the parsimony criterion highly significant evidence for the sister group relationships defined by a cladistic classification that groups the lineages to all extant hominoids into family Hominidae, divides this ape family into subfamilies Hylobatinae (gibbons) and Homininae, divides Homininae into tribes Pongini (orangutans) and Hominini, and divides Hominini into subtribes Gorillina (gorillas) and Hominina (humans and chimpanzees). A likelihood analysis of the largest body of these noncoding orthologues and counts of putative synapomorphies using the full range of sequence data from mitochondrial and nuclear genomes also find that humans and chimpanzees share the longest common ancestry. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The evolutionary relationships among members of Apiaceae (Umbelliferae) tribe Scandiceae and representatives of all major lineages of Apioideae (including putatively allied Caucalideae) identified in earlier molecular studies were inferred from nucleotide sequence variation in the internal transcribed spacer regions (ITS1 and ITS2) of nuclear ribosomal DNA. In all, 134 accessions representing 18 genera commonly treated in Scandiceae were analyzed. Phylogenies estimated using maximum parsimony and distance methods were generally similar and suggest that: (1) Scandiceae form a well-supported clade, consisting of the genera Anthriscus, Athamanta (in part), Balansaea, Chaerophyllum, Conopodium, Geocaryum, Kozlovia, Krasnovia, Myrrhis, Myrrhoides, Neoconopodium, Osmorhiza, Scandix, Sphallerocarpus, and Tinguarra; (2) Athamanta is polyphyletic, with A. della-cellae allied with Daucus and A. macedonica placed close to Pimpinella; and (3) Rhabdosciadium and Grammosciadium find affinity with the Aegopodium group of umbellifers, whereas the placement of the monotypic Molopospermum cannot be inferred because of its high sequence divergence. The genus Bubon has been restored with two new combinations, B. macedonicum subsp. albanicum and B. macedonicum subsp. arachnoideum. Scandiceae arise within paraphyletic Caucalideae, the latter comprising two major lineages whose relationships to Scandiceae are not clear. Therefore, a broad treatment of Scandiceae is proposed, with subtribes Scandicinae, Daucinae, and Torilidinae (the latter two representing the Daucus and Torilis subgroups, respectively, of recent molecular systematic investigations).  相似文献   

5.
Despite the considerable research that has focused on the evolutionary relationships and biogeography of the genus Bufo, an evolutionary synthesis of the entire group has not yet emerged. In the present study, almost 4 kb of DNA sequence data from mitochondrial (12S, tRNAVal, and 16S) and nuclear (POMC; Rag-1) genes, and 83 characters from morphology were analysed to infer a phylogeny of South American toads. Phylogenies were reconstructed with parsimony and maximum likelihood and Bayesian model-based methods. The results of the analysis of morphological data support the hypothesis that within Bufo , some skull characters (e.g. frontoparietal width), correlated with the amount of cranial ossification, are prone to homoplasy. Unique and unreversed morphological synapomorphies are presented that can be used to diagnose recognized species groups of South American toads. The results of all phylogenetic analyses support the monophyly of most species groups of South American Bufo . In most DNA-only and combined analyses, the South American (minus the B. guttatus and part of the ' B. spinulosus ' groups), North American, Central American, and African lineages form generally well-supported clades: ((((((((South America) (North America + Central America)) Eurasia) Africa) Eurasia) South America) West Indies) South America). This result confirms and extends prior studies recovering South American Bufo as polyphyletic. The biogeographical results indicate that: (1) The origin of Bufo predates the fragmentation of Gondwana; (2) Central and North American species compose the sister group to a large, 'derived' clade of South American Bufo ; and (3) Eurasian species form the sister group to the New World clade.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 407–452.  相似文献   

6.
We produced a molecular phylogeny of species within the order Strongylida (bursate nematodes) using the D1 and D2 domains of 28S rDNA, with 23 new sequences for each domain. A first analysis using Caenorhabditis elegans as an outgroup produced a tree with low resolution in which three taxa (Dictyocaulus filaria, Dictyocaulus noerneri, and Metastrongylus pudendotectus) showed highly divergent sequences. In a second analysis, these three species and C. elegans were removed and an Ancylostomatina, Bunostomum trigonocephalum, was chosen (on the basis of previous morphological analyses) as the outgroup for an analysis of the phylogenetic relationships between and within the Strongylina (strongyles) and Trichostrongylina (trichostrongyles). A very robust tree was obtained. The Trichostrongylina were monophyletic, but the Strongylina were paraphyletic, though this requires confirmation. Within the Trichostrongylina, the three superfamilies defined from morphological characters are confirmed, with the Trichostrongyloidea sister group to a clade including the Molineoidea and Heligmosomoidea. Within the Trichostrongyloidea, the Cooperiidae, Trichostrongylidae, and Haemonchidae were polytomous, the Haemonchinae were monophyletic, but the Ostertagiinae were paraphyletic. The sister-group relationships between Molineoidea and Heligmosomoidea were unsuspected from previous morphological analysis. No unequivocal morphological synapomorphy could be found for the grouping Molineoidea + Heligmosomoidea, but none was found which contradicted it.  相似文献   

7.
Regions of the mitochondrial genome were sequenced and analysed in representative species of poison frogs, in order to investigate phylogenetic relationships within the family Dendrobatidae. Mitochondrial DNA (mfDNA) fragments from three gene regions; cytochrome b, 16S ribosomal RNA (rRNA), and 12S rRNA, provided 1198 base pairs of DNA sequence and 589 informative sites. Phylogenetic analysis using parsimony was used to infer the evolutionary relationships among the species in the survey. Our analysis supported previous partitions of species into the genera Epipedobates, Phyllobates and Dendrobates , with two exceptions; Epipedobates (Allobates) femoralis was placed outside the clade containing the other toxic dendrobatids, and Minyobates minutus was placed within the genus Dendrobates. Genetic distances estimated between all pairs of taxa using the Kimura 2-parameter model indicated substantial genetic divergence between species, particularly those found in Amazonia. Time of divergence estimates were highly variable depending on gene region, but even the lowest estimates were inconsistent with the Pleistocene Refugia hypothesis.  相似文献   

8.
Taxonomy of the live‐bearing fish of the genus Ilyodon Eigenmann, 1907 (Goodeidae), in Mexico, is controversial, with morphology and mitochondrial genetic analyses in disagreement about the number of valid species. The present study accumulated a comprehensive DNA sequences dataset of 98 individuals of all Ilyodon species and mitochondrial and nuclear loci to reconstruct the evolutionary history of the genus. Phylogenetic inference produced five clades, one with two sub‐clades, and one clade including three recognized species. Genetic distances in mitochondrial genes (cytb: 0.5%–2.1%; coxI: 0.5%–1.1% and d‐loop: 2.3%–10.2%) were relatively high among main clades, while, as expected, nuclear genes showed low variation (0.0%–0.2%), with geographic concordance and few shared haplotypes among river basins. High genetic structure was observed among clades and within basins. Our genetic analyses, applying the priority principle, suggest the recognition only of Ilyodon whitei and Ilyodon furcidens, with I. cortesae relegated to an invalid species, the populations of which belong to I. whitei.  相似文献   

9.
The phylogeny of Ptychostomum was first spacer (ITS) region of the nuclear ribosomal (nr) DNA DNA rps4 sequences. Maximum parsimony, maximum undertaken based on analysis of the internal transcribed and by combining data from nrDNA ITS and chloroplast likelihood, and Bayesian analyses all support the conclusion that the reinstated genus Ptychostomum is not monophyletic. Ptychostomum funkii (Schwagr.) J. R. Spence (≡ Bryum funkii Schwaigr.) is placed within a clade containing the type species of Bryum, B. argenteum Hedw. The remaining members of Ptychostomum investigated in the present study constitute another well-supported clade. The results are congruent with previous molecular analyses. On the basis of phylogenetic evidence, we agree with transferring B. amblyodon Mull. Hal. (≡ B. inclinatum (Brid.) Turton≡ Bryum archangelicum Bruch & Schimp.), Bryum lonchocaulon Mull. Hal., Bryum pallescens Schleich. ex Schwaigr., and Bryum pallens Sw. to Ptychostomum.  相似文献   

10.
Abstract.— The genus Brachyderes Schönherr (Coleoptera: Curculionidae) is represented by the species B. rugatus Wollaston on the Canary Islands, with one subspecies on each of the islands of Gran Canaria, Tenerife, La Palma, and El Hierro. These four subspecies are associated with the endemic pine tree Pinus canariensis , and their distributions are broadly coincident. Eighty-eight individual Canarian Brachyderes , sampled from across the distributions of each subspecies, have been sequenced for 570 bp of the mitochondrial DNA (mtDNA) cytochrome oxidase II gene (COII). No mitotypes are shared among islands. Both maximum-likelihood and distance-based phylogenetic analyses have shown that: Tenerife is composed of a single monophyletic clade of mitotypes, El Hierro is composed of a single monophyletic clade occurring within a larger clade comprising all the La Palma mitotypes, and the mitotypes of these three islands form a monophyletic group distinct from Gran Canaria. New methods for estimating divergence times without the assumption of rate constancy have been used to reconstruct the direction and approximate timing of colonizations among the islands. Colonization has occurred from older to progressionally younger islands, and these colonizations are estimated to have occurred less than 2.6 million years ago, although the timing of the initial colonization of the archipelago is not discernable. New methods for the estimation of diversification rates that use branching times as the analyzed variable have been applied to each island fauna. Hypothesized effects of different levels of recent volcanism among islands were not apparent. All islands exhibit a gradually decreasing rate of genetic diversification that is marked by periodic sudden changes in rate.  相似文献   

11.
紫乌头复合体nrDNA的ITS序列与系统发育分析   总被引:8,自引:0,他引:8  
对乌头属 Aconitum L. 27个类群的nrDNA ITS序列进行了简约法与邻接法分析,两种方法得到的系统发育树基本一致。乌头亚属subgen. Aconitum 的蔓乌头系 ser. Volubilia 不是一个单系类群,显柱乌头系 ser. Stylosa 与兴安乌头系ser. Ambigua 各自作为单系类群也没有得到支持。特产于云南西北部横断山区的一些种之间存在非常近的系统发育关系,说明这些种可能是近期物种形成的产物。紫乌头 A. delavayi 复合体的不同类群在系统发育树上位  相似文献   

12.
We investigated the relationships of Asian bufonids using partial sequences of mitochondrial DNA genes. Twenty-six samples representing 14 species of Bufo from China and Vietnam and 2 species of Torrentophryne from China were examined. Three samples of Bufo viridis from Armenia and Georgia were also sequenced to make a comparison to its sibling tetraploid species B. danatensis. Bufo americanus, from Canada, was used as the outgroup. Sequences from the 12S ribosomal RNA, 16S ribosomal RNA, cytochrome b, and the control region were analyzed using parsimony. East Asian bufonids were grouped into two major clades. One clade included B. andrewsi, B. bankorensis, B. gargarizans, B. tibetanus, B. tuberculatus, its sister clade B. cryptotympanicus, and the 2 species of Torrentophryne. The second clade consisted of B. galeatus, B. himalayanus, B. melanostictus, and a new species from Vietnam. The placement of three taxa (B. raddei, B. viridis, and its sister species, B. danatensis) was problematic. The genus Torrentophryne should be synonymized with Bufo to remove paraphyly. Because B. raddei does not belong to the clade that includes B. viridis and B. danatensis, it was removed from the viridis species group. The species status of B. bankorensis from Taiwan is evaluated.  相似文献   

13.
The inclusion of species of Colchicum within Androcymbium in a previous cpDNA phylogeny of the Colchicaceae, questioned the monophyly of Androcymbium, and it was proposed to unite the two genera in Colchicum. Here we expand the previous phylogenetic analyses of Androcymbium by increasing the taxon sampling and adding more data. The analysis include 29 of the 57 species of Androcymbium, more cpDNA (trnL intron, trnL-trnF IGS, trnY-trnD IGS, and trnH-psbA IGS), and nDNA (RNApol2 intron 23) regions, and morphological and life-history traits data. Both parsimony and Bayesian inference were used. According to our data there is no reason to expand Colchicum to include Androcymbium, but we support the inclusion of Bulbocodium and Merendera within Colchicum. Morphology and life history traits are the main arguments in favor of recognizing Androcymbium as a well-circumscribed genus. In the phylogeny two Androcymbium groups are clearly differentiated: (1) one including species from Western and Eastern South Africa, Namibia, and North Africa, and (2) one including species from the north west of South Africa and south of Namibia.  相似文献   

14.
Subfamily Barnadesioideae (Asteraceae) consists of nine genera and 91 species endemic to South America. They include annual and perennial herbs, arching shrubs and trees up to 30 m tall. Presumed sister to all other Asteraceae, its intergeneric relationships are key to understanding the early evolution of the family. Results of the only molecular study on the subfamily conflict with relationships inferred from morphology. We investigate inter- and intrageneric relationships in Barnadesioideae with novel DNA sequence data and morphological characters using parsimony, likelihood and Bayesian inference. All results verify Barnadesioideae as monophyletic and sister to the rest of the family. A basal split within the subfamily is recognized, with Chuquiraga, Doniophyton and Duseniella in one clade, and Arnaldoa, Barnadesia, Dasyphyllum, Fulcaldea, Huarpea and possibly Schlechtendalia in another. The largest genus, Dasyphyllum, is revealed as biphyletic with the two clades separating along subgeneric and geographic lines. Schlechtendalia, suggested as the earliest diverging lineage of the subfamily by morphological studies and parsimony analyses, is found in a more derived position under model-based inference methods. Competing phylogenetic hypotheses, both previous and present, are evaluated using likelihood-based tests. Evolutionary trends within Barnadesioideae are inferred: hummingbird pollination has developed convergently at least three times. An early vicariance in the subfamily’s distribution is revealed. X = 9 is supported as the ancestral base chromosome number for both Barnadesioideae and the family as a whole.  相似文献   

15.
16.
The mitochondrial ribosomal large subunit (Ls) DNA was used to identify the orchid mycorrhizal fungi found in roots of Dactylorhiza majalis. The gene was amplified using DNA extracted from single pelotons obtained from fresh and silica gel dried roots. Furthermore, sequencing a variety of well-characterized orchid isolates expanded the fungal database of the mitochondrial ribosomal LsDNA. Polymerase chain reaction product length variants present in D. majalis were sequenced and identified using the expanded database. These analyses revealed two different peloton-forming fungi in samples from D. majalis, which sometimes occurred together as a single two-taxa peloton within the same cortex cell. The first taxon belonged to the genus Tulasnella and the second taxon was distantly related to Laccaria.  相似文献   

17.
Many investigators categorize individuals from hybrid zones to facilitate comparisons among genotypic classes (e.g., parental, F1, backcross) for comparative studies in which components of fitness or geographic variation are being analyzed. Frequently, multiple character sets representing genetically independent traits are used to classify these individuals and various methodologies are employed to combine the classifications obtained from the different character sets. We adapted the principles of total evidence and taxonomic congruence (two formalized approaches used by systematists in formulating phylogenetic hypotheses) to address the problem of discriminating hybridizing species and classifying individuals from hybrid zones. As our model, we used two morphological (coloration and morphometric) and two molecular (allozyme and mitochondrial DNA restriction-fragment-length polymorphism) character sets that differentiate two stone crab species (Menippe adina and M. mercenaria). Using principal-components analysis, we determined that combining character sets and eliminating characters or character sets that did not have large eigenvector coefficients for the principal component that best separated the two species yielded the highest level of discrimination between species and allowed us to classify a broad range of morpho-genotypes as hybrids. For the stone crabs, three diagnostic allozyme loci and five diagnostic coloration characters best separated the species. The two character sets were not completely congruent, but they agreed in their classification of 50% of the individuals from the hybrid zone and rarely strongly disagreed in their classifications. Classification discrepancies between the two character sets probably represent variation between traits in interspecific gene flow rather than intraspecific, ecologically mediated variation. Our results support the assertions of previous investigators who espoused the benefits associated with using multiple character sets to classify individuals from hybrid zones and demonstrate that, if character sets are reasonably congruent and numerically balanced, combining diagnostic characters from multiple character sets (a total-evidence approach) can enhance discriminatory power between species and facilitate the assignment of hybrid-zone individuals to genotypic classes. On the contrary, classifying hybrid-zone individuals using character sets separately (a taxonomic-congruence approach) provides the opportunity to compare levels of introgression between species and to assess reasons for discordance among the data sets.  相似文献   

18.
Bunyard, B. A., Nicholson, M. S., and Royse, D. J. 1996. Phylogeny of the genusAgaricusinferred from restriction analysis of enzymatically amplified ribosomal DNA.Fungal Genetics and Biology20,243–253. The 26S and 5S ribosomal RNA genes and the intergenic region between the 26S and the 5S rRNA genes of the ribosomal DNA repeat of 21 species ofAgaricuswere amplified using PCR and then digested with 10 restriction enzymes. Restriction fragment length polymorphisms were found among the 21 putative species ofAgaricusinvestigated and used to develop a phylogenetic tree of the evolutionary history ofA. bisporus.The 5′ end of the 26S gene showed more variability than the 3′ end.A. excellens, A. chionodermus,andA. carolirepresented the species most distantly related toA. bisporus.We present here the first comprehensive attempt at systematically resolving the entire genusAgaricususing modern techniques for molecular genetic analysis. Our data indicate that previous taxonomic schemes, based on morphological characters, are in need of revision.  相似文献   

19.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

20.
To determine the molecular phylogenic location of Plagiorchis muris, 28S D1 ribosomal DNA (rDNA) and mitochondrial cytochrome C oxidase subunit I (mtCOI) were sequenced and compared with other trematodes in the family Plagiorchiidae. The 28S D1 tree of P. muris was found to be closely related to those of P. elegans and other Plagiorchis species. And, the mtCOI tree also showed that P. muris is in a separate clade with genus Glypthelmins. These results support a phylogenic relationship between members of the Plagiorchiidae, as suggested by morphologic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号