首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact spinach chloroplasts incorporated 35SO42− into sulfoquinovosyldiacylglycerol in the dark at rates equivalent to those previously reported for illuminated chloroplasts provided that either ATP itself or an ATP-generating system was added. No additional reductant was necessary for SQDG synthesis by chloroplasts. The optimal concentration of ATP was between 2 and 3 millimolar. Rates of synthesis up to 2.6 nanomoles per milligram chlorophyll per hour were observed. UTP, GTP, and CTP could not substitute for ATP. Incubation of UTP with ATP (1:1) stimulated synthesis of sulfoquinovosyldiacylglycerol. No additional stimulation of the reaction was observed upon addition of other nucleoside triphosphates with ATP. For the generation of ATP in the chloroplast, addition of dihydroxyacetone phosphate alone did not promote synthesis of sulfoquinovosyldiacylglycerol, but in combination with inorganic phosphate and oxaloacetate, rates of synthesis up to 3.2 nanomoles per milligram chlorophyll per hour were observed. Dark synthesis was optimal in the presence of 2 millimolar dihydroxyacetone phosphate, 2 millimolar oxaloacetate, and 1 millimolar KH2PO4.  相似文献   

2.
The sulfolipid sulfoquinovosyldiacylglycerol is a component of plant photosynthetic membranes and represents one of the few naturally occurring sulfonic acids with detergent properties. Sulfolipid biosynthesis involves the transfer of sulfoquinovose, a 6-deoxy-6-sulfoglucose, from UDP-sulfoquinovose to diacylglycerol. The formation of the sulfonic acid precursor, UDP-sulfoquinovose, from UDP-glucose and a sulfur donor is proposed to be catalyzed by the bacterial SQDB proteins or the orthologous plant SQD1 proteins. To investigate the underlying enzymatic mechanism and to elucidate the de novo synthesis of sulfonic acids in biological systems, we developed an in vitro assay for the recombinant SQD1 protein from Arabidopsis thaliana. Among different possible sulfur donors tested, sulfite led to the formation of UDP-sulfoquinovose in the presence of UDP-glucose and SQD1. An SQD1 T145A mutant showed greatly reduced activity. The UDP-sulfoquinovose formed in this assay was identified by co-chromatography with standards and served as substrate for the sulfolipid synthase associated with spinach chloroplast membranes. Approximate K(m) values of 150 microm for UDP-glucose and 10 microm for sulfite were established for SQD1. Based on our results, we propose that SQD1 catalyzes the formation of UDP-sulfoquinovose from UDP-glucose and sulfite, derived from the sulfate reduction pathway in the chloroplast.  相似文献   

3.
Adenosine-5′-phosphosulfate (APS) and adenosine-3′-phosphate 5′-phosphosulfate (PAPS) have been used as precursors of sulfoquinovosyldiacylglycerol (SQDG) in intact chloroplasts incubated in the dark. Competition studies demonstrated APS was preferred over PAPS and SO42−. Rates of SQDG synthesis up to 3 nanomoles per milligram of chlorophyll per hour were observed when [35S]APS and appropriate cofactors were supplied to chloroplasts incubated in the dark. The pH optimum for utilization of APS was 7.0. The incorporation was linear for at least 30 minutes. ATP and UTP stimulated the incorporation of sulfur from APS into SQDG, but the most stimulatory additions were DHAP and glycerol-3-P. The concentration curve for APS showed a maximum at 20 micromolar in the absence of DHAP and 30 micromolar in the presence of DHAP. The optimum concentration of DHAP for conversion of APS into SQDG was 2 millimolar. Rates of synthesis up to 4 nanomoles per milligram of chlorophyll per hour were observed when [35S]PAPS was the sulfur donor and appropriate cofactors were supplied to chloroplasts. Optimal rates for conversion of sulfur from PAPS into SQDG occurred with concentrations of DHAP between 5 and 10 millimolar. DHAP was by far the most effective cofactor, although ATP and UTP also stimulated the utilization of PAPS for SQDG biosynthesis. In general, triose phosphates, including glycerol-3-P were not effective cofactors for SQDG biosynthesis.  相似文献   

4.
Sulfoquinovose (6-deoxy-6-sulfo-D-glucopyranose), formed by the hydrolysis of the plant sulfolipid, is a major component of the biological sulfur cycle. However, pathways for its catabolism are poorly delineated. We examined the hypothesis that mineralization of sulfoquinovose to inorganic sulfate is initiated by reactions of the glycolytic and/or Entner-Doudoroff pathways in bacteria. Metabolites of [U-(13)C]sulfoquinovose were identified by (13)C-nuclear magnetic resonance (NMR) in strains of Klebsiella and Agrobacterium previously isolated for their ability to utilize sulfoquinovose as a sole source of carbon and energy for growth, and cell extracts were analyzed for enzymes diagnostic for the respective pathways. Klebsiella sp. strain ABR11 grew rapidly on sulfoquinovose, with major accumulations of sulfopropandiol (2,3-dihydroxypropanesulfonate) but no detectable release of sulfate. Later, when sulfoquinovose was exhausted and growth was very slow, sulfopropandiol disappeared and inorganic sulfate and small amounts of sulfolactate (2-hydroxy-3-sulfopropionate) were formed. In Agrobacterium sp. strain ABR2, growth and sulfoquinovose disappearance were again coincident, though slower than that in Klebsiella sp. Release of sulfate was still late but was faster than that in Klebsiella sp., and no metabolites were detected by (13)C-NMR. Extracts of both strains grown on sulfoquinovose contained phosphofructokinase activities that remained unchanged when fructose 6-phosphate was replaced in the assay mixture with either glucose 6-phosphate or sulfoquinovose. The results were consistent with the operation of the Embden-Meyerhoff-Parnas (glycolysis) pathway for catabolism of sulfoquinovose. Extracts of Klebsiella but not Agrobacterium also contained an NAD(+)-dependent sulfoquinovose dehydrogenase activity, indicating that the Entner-Doudoroff pathway might also contribute to catabolism of sulfoquinovose.  相似文献   

5.
1. Chloroplasts isolated from spinach leaves by using the low-ionic-strength buffers of Nakatani & Barber [(1977) Biochim. Biophys. Acta.461, 510-512] had higher rates of HCO(3) (-)-dependent oxygen evolution (up to 369mumol/h per mg of chlorophyll) and higher rates of [1-(14)C]acetate incorporation into long-chain fatty acids (up to 1500nmol/h per mg of chlorophyll) than chloroplasts isolated by using alternative procedures. 2. Acetate appeared to be the preferred substrate for fatty acid synthesis by isolated chloroplasts, although high rates of synthesis were also measured from H(14)CO(3) (-) in assays permitting high rats of photosynthesis. Incorporation of H(14)CO(3) (-) into fatty acids was decreased by relatively low concentrations of unlabelled acetate. Acetyl-CoA synthetase activity was present 3-4 times in excess of that required to account for rates of [1-(14)C]acetate incorporation into fatty acids, but pyruvate dehydrogenase was either absent or present in very low activity in spinach chloroplasts. 3. Rates of long-chain-fatty acid synthesis from [1-(14)C]acetate in the highly active chloroplast preparations, compared with those used previously, were less dependent on added cofactors, but showed a greater response to light. The effects of added CoA plus ATP, Triton X-100 and sn-glycerol 3-phosphate on the products of [1-(14)C]acetate incorporation were similar to those reported for less active chloroplast preparations. 4. Endogenous [(14)C]acetyl-CoA plus [(14)C]malonyl-CoA was maintained at a constant low level even when fatty acid synthesis was limited by low HCO(3) (-) concentrations. Endogenous [(14)C]acyl-(acyl-carrier protein) concentrations increased with increasing HCO(3) (-) concentration and higher rates of fatty acid synthesis, but were slightly lower in the presence of Triton X-100. It is proposed that rates of long-chain-fatty acid synthesis in isolated chloroplasts at saturating [1-(14)C]acetate concentrations and optimal HCO(3) (-) concentrations may be primarily controlled by rates of removal of the products of the fatty acid synthetase.  相似文献   

6.
The sulfoglycolipid sulfoquinovosyldiacylglycerol is present in the membranes of photosynthetic organisms. This sulfolipid reportedly has pharmaceutical potential as an antiviral and antitumor agent, although no studies have examined these properties of the sulfolipids that are consumed in plant foods. This study examined the biological effects of sulfoquinovosyldiacylglycerol on the human gastric cancer cell line SNU-1. SNU-1 cells were grown in the absence and of presence of 1 &mgr;M, 100 &mgr;M or 1 mM sulfoquinovosyldiacylglycerol for up to 72 hours. Cell proliferation and viability were determined. The cells were analyzed for nuclear morphological changes by fluorescence microscopy and for DNAase-mediated DNA cleavage by flow cytometry and TUNEL detection. As indicated by cell number, the proliferation of SNU-1 cells by 72 hours of culture in the presence of 100 &mgr;M and 1 mM SQDG was inhibited 24 and 100%, respectively, as compared with the number of SNU-1 cells cultured in the absence of SQDG. Inhibition of cell proliferation by 100 &mgr;M sulfoquinovosyldiacylglycerol was in part associated with apoptotic cell death, as shown by changes in nuclear morphology and DNA fragmentation, whereas incubation of cells with 1 mM sulfoquinovosyldiacylglycerol caused necrotic cell death. Treatment of SNU-1 cells with sulfoquinovosyldiacylglycerol did not result in cell cycle arrest. The antiproliferative and apoptotic effects of sulfoquinovosyldiacylglycerol on SNU-1 gastric cancer cells revealed in this study suggest that this common dietary sulfolipid has intriguing potential as a chemopreventive or chemotherapeutic agent.  相似文献   

7.
The small Photosystem I particles prepared from spinach chloroplasts by the action of Triton X-100 (TSF 1 particles) reaggregate into membrane structures when they are incubated with soybean phospholipids and cholate and then subjected to a slow dialysis. The membranes so formed are vesicular in nature and show the capability of catalyzing phenazine methosulfate-mediated cyclic photophosphorylation at rates which are usually about 20% of those observed with chloroplasts, but higher rates have been obtained. When coupling factor is removed from the chloroplasts by treatment with EDTA, a requirement for coupling factor can be shown for the subsequent ATP formation. The uncouplers carbonylcyanide 3-chlorophenyl-hydrazone, valinomycin, Triton X-100 and NH+4 are effective with the reformed vesicles, which do not show the typical light-induced pH gradient observed with chloroplasts. Incubation of the TSF 1 particles with phospholipids alone allows for the formation of membrane vesicles, but such vesicles are only slightly active in ATP formation. In most properties investigated, the reformed membrane vesicles resemble the original chloroplast membrane so far as phenazine methosulfate-mediated cyclic photophosphorylation is concerned, which indicates a high degree of selectivity in the reaggregation process. The major difference between chloroplasts and the reformed vesicles is the failure of the latter to show a light-induced pH gradient.  相似文献   

8.
The plant sulfolipid sulfoquinovosyldiacylglycerol was discovered by A.A. Benson in the late 1950s. The increasing availability of radioisotope-containing biological substrates such as 35S-sulfate provided the means to discover novel biological compounds and to sketch out their biosynthetic pathways. During this time the structure of sulfolipid with its 6-deoxy-6-sulfo-α-d-glucose (sulfoquinovose) headgroup was determined. Immediately, the origin of this unusual biological sulfonic acid mystified the scientific community and several proposals for its biosynthesis were developed and tested. Strong supportive evidence for the nucleotide pathway of sulfolipid biosynthesis became available with the discovery of the bacterial and plant genes encoding the enzymes of sulfolipid biosynthesis during the 1990s. This latter work was based on the foundations laid by A.A. Benson and confirmed one initial hypothesis on sulfolipid biosynthesis. An abbreviated summary of the turning points in defining the mechanism for sulfolipid biosynthesis and remaining issues in sulfolipid biochemistry are provided.  相似文献   

9.
The small Photosystem I particles prepared from spinach chloroplasts by the action of Triton X-100 (TSF 1 particles) reaggregate into membrane structures when they are incubated with soybean phospholipids and cholate and then subjected to a slow dialysis. The membranes so formed are vesicular in nature and show the capability of catalyzing phenazine methosulfate-mediated cyclic photophosphorylalation at rates which are usually about 20% of those observed with chloroplasts, but higher rates have been obtained. When coupling factor is removed from the chloroplasts by treatment with EDTA, a requirement for coupling factor can be shown for the subsequent ATP formation. The uncouplers carbonylcyanide 3-chlorophenyl-hydrazone, valinomycin, Triton X-100 and NH+4 are effective with the reformed vesicles, which do not show the typical light-induced pH gradient observed with chloroplasts. Incubation of the TSF 1 particles with phospholipids alone allows for the formation of membrane vesicles, but such vesicles are only slightly active in ATP formation. In most properties investigated, the reformed membrane vesicles resemble the original chloroplast membrane so far as phenazine methosulfate-mediated cyclic photophosphorylation is concerned, which indicates a high degree of selectivity in the reaggregation process. The major difference between chloroplasts and the reformed vesicles is the failure of the latter to show a light-induced pH gradient.  相似文献   

10.
11.
Acyl-coenzyme A (CoA) synthetases (ACSs, EC 6.2.1.3) catalyze the formation of fatty acyl-CoAs from free fatty acid, ATP, and CoA. Essentially all de novo fatty acid synthesis occurs in the plastid. Fatty acids destined for membrane glycerolipid and triacylglycerol synthesis in the endoplasmic reticulum must be first activated to acyl-CoAs via an ACS. Within a family of nine ACS genes from Arabidopsis, we identified a chloroplast isoform, LACS9. LACS9 is highly expressed in developing seeds and young rosette leaves. Both in vitro chloroplast import assays and transient expression of a green fluorescent protein fusion indicated that the LACS9 protein is localized in the plastid envelope. A T-DNA knockout mutant (lacs9-1) was identified by reverse genetics and these mutant plants were indistinguishable from wild type in growth and appearance. Analysis of leaf lipids provided no evidence for compromised export of acyl groups from chloroplasts. However, direct assays demonstrated that lacs9-1 plants contained only 10% of the chloroplast long-chain ACS activity found for wild type. The residual long-chain ACS activity in mutant chloroplasts was comparable with calculated rates of fatty acid synthesis. Although another isozyme contributes to the activation of fatty acids during their export from the chloroplast, LACS9 is a major chloroplast ACS.  相似文献   

12.
1. Divalent antibodies against chloroplast coupling factor 1 inhibited the factor ATPase, ATP synthesis, hydrolysis and Pi-ATP exchange in chloroplasts. These antibodies also inhibited coupled electron flow rates but not the basal or uncoupled rates. 2. Several types of non-precipitating, modified antibodies prepared from the original antibody preparation strongly inhibited the ATPase and Pi-ATP exchange reaction but had little effect on ATP formation. 3. It is suggested that the inhibition of ATP synthesis by the divalent antibodies is probably due to an indirect blocking of the active site, while the inhibition of ATP-utilizing reactions by the modified antibodies is related to their effect on the transfer of ATP from a non-catalytic to a catalytic site on coupling factor 1, via an energy-dependent conformational change.  相似文献   

13.
High irradiance (HI) and high temperature (HT) increased in chloroplasts the content of monogalactosyldiacylglycerol (MGDG) and decreased the contents of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylinositol (PI). HI and HT accelerated the transformation of DGDG to MGDG. The contents of unsaturated fatty acids in chloroplasts increased, while those of saturated fatty acids decreased. The contents of total carotenoids, neoxanthin, violaxanthin, lutein, and β-carotene increased first, then decreased. The content of chlorophyll decreased. HI caused the unfolding of thylakoids that was not resumed after a 72-h recovery.  相似文献   

14.
BIOSYNTHESIS OF SMALL MOLECULES IN CHLOROPLASTS OF HIGHER PLANTS   总被引:1,自引:0,他引:1  
1. Chloroplasts of higher plants contain enzymes which permit them to synthesize many kinds of small molecules in addition to carbohydrates. 2. Either aqueous or non-aqueous techniques may be used to isolate chloroplasts. Aqueous methods permit the isolation of chloroplasts showing high rates of photosynthesis; the organelles can be purified by means of density gradients. Non-aqueously isolated chloroplasts cannot photosynthesize, but show good retention of low-molecular-weight substances and soluble enzymes. 3. Whole cells photoassimilating 14CO2 show considerable formation of 14C-labelled amino acids and lipids, but isolated chloroplasts exhibit very poor synthesis of amino acids and lipids from 14CO2. 4. Chloroplasts play an important rôle in reducing nitrate to ammonia. There is controversy about the presence in chloroplasts of nitrate reductase and about the mechanism of the light-dependent reduction of nitrate to nitrite; however, it is generally agreed that non-cyclic electron transport directly supports reduction of nitrite to ammonia via a chloroplastic nitrite reductase. 5. Chloroplasts actively assimilate inorganic nitrogen into amino acids. The assimilation reaction is either the reductive amination of α-ketoglutarate to glutamate or the ATP-dependent conversion of glutamate to glutamine. The enzyme glutamate synthase has recently been found to be present in chloroplasts and may play an important function in nitrogen assimilation. 6. Numerous transaminases (aminotransferases) are present in chloroplasts. 7. The source of α-keto-acid precursors of chloroplastic amino acids is unknown. It remains to be established whether chloroplasts import the required keto acids or whether some of them might be generated via an incomplete tricarboxylic-acid cycle located in the chloroplast. 8. Chloroplasts contain characteristically high levels of mono and digalactosyl diglycerides, sulpholipid and phosphatidyl glycerol. They also have large amounts of polyunsaturated fatty acids. 9. Fatty acids are synthesized by the concerted action of fatty-acid synthetase, elongases and desaturases. Two pathways have been implicated for the formation of α-linolenic acid. 10. The galactosyldiglycerides are synthesized by successive galactosylation of diglyceride. The enzymes responsible are probably located in the chloroplastic envelope. 11. The other major chloroplastic acyl lipids (sulpholipid, phosphatidylglycerol and phosphatidylcholine) have not been, as yet, synthesized de novo by means of isolated chloroplast fractions. However, indirect evidence indicates that the first two are probably formed there. 12. Chlorophyllide synthesis involves the formation of δ-aminolaevulinic acid (δALA) followed by conversion of δALA to protoporphyrin IX, which is then transformed into protochlorophyll. 13. Recent evidence favours the view that δALA synthesis is not mediated by δALA synthetase but by another pathway in which δALA can be derived from α-ketoglutarate or glutamate. It has not been established whether this pathway is localized in plastids. 14. Conversion of δALA to protoporphyrin IX is mediated by soluble enzymes of the plastid stroma. Membrane-bound enzymes mediate the conversion of protoporphyrin to protochlorophyll. 15. Carotenoids are synthesized from acetyl CoA via geranylgeranyl-pyrophosphate and phytoene intermediates. Evidence has been obtained for both neurosporene and lycopene as precursors of the cyclic carotenoids. 16. The overall pathway of carotenoid formation is subject to photoregulation, particularly during the development of the chloroplast. 17. Carotenes are precursors of xanthophylls, the inserted oxygen being derived from molecular oxygen. 18. Chloroplasts may synthesize or interconvert gibberellin hormones.  相似文献   

15.
Glycerolipid synthesis in plants is coordinated between plastids and the endoplasmic reticulum (ER). A central step within the glycerolipid synthesis is the transport of phosphatidic acid from ER to chloroplasts. The chloroplast outer envelope protein TGD4 belongs to the LptD family conserved in bacteria and plants and selectively binds and may transport phosphatidic acid. We describe a second LptD‐family protein in A. thaliana (atLPTD1; At2g44640) characterized by a barrel domain with an amino‐acid signature typical for cyanobacterial LptDs. It forms a cation selective channel in vitro with a diameter of about 9 Å. atLPTD1 levels are induced under phosphate starvation. Plants expressing an RNAi construct against atLPTD1 show a growth phenotype under normal conditions. Expressing the RNAi against atLPTD1 in the tgd4–1 background renders the plants more sensitive to light stress or phosphate limitation than the individual mutants. Moreover, lipid analysis revealed that digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol levels remain constant in the RNAi mutants under phosphate starvation, while these two lipids are enhanced in wild‐type. Based on our results, we propose a function of atLPTD1 in the transport of lipids from ER to chloroplast under phosphate starvation, which is combinatory with the function of TGD4.  相似文献   

16.
M. R. Kirk  U. Heber 《Planta》1976,132(2):131-141
Summary Intact chloroplasts capable of high rates of CO2 assimilation completely oxidized 3-phosphoglycerate and dihydroxyacetone phosphate to glycolate when CO2 concentrations were low. Bicarbonate was converted first into products of the Calvin cycle and then into glycolate. Under high oxygen and at high pH values CO2 fixation and glycolate formation ceased before bicarbonate was exhausted. This is interpreted as the consequence of a depletion of ribulose diphosphate (RuDP) at the oxygen compensation point, where oxygen consumption by glycolate formation and oxygen evolution by phosphoglycerate reduction balance each other. Depletion of RuDP by glycolate formation is proposed to play a role in the Warburg effect. The maximum rate of glycolate synthesis observed with dihydroxyacetone phosphate as substrate was 35 mol mg-1 chlorophyll h-1 at 20°C. This may not reflect the maximum capacity of chloroplasts for glycolate synthesis. Dithiothreitol and catalase, which prevent accumulation of oxygen radicals or H2O2 during carbon assimilation, increased glycolate formation. H2O2 was inhibitory. Other inhibitors of glycolate formation were glyceraldehyde and carbonylcyanide p-trifluoro-methoxphenylhydrazone. From the sensitivity of glycolate synthesis to uncoupling and the ATP requirement of RuDP formation it is concluded that glycolate originated from RuDP. Different induction periods of carbon fixation and glycolyte formation suggested that glycolate synthesis is not only regulated by the ratio of oxygen to CO2 but also by another factor.  相似文献   

17.
ATP concentrations were measured in isolated intact spinach chloroplasts under various light and dark conditions. The following results were obtained: (1) Even in darkened chloroplasts and in the absence of exogenous substrates, ATP levels in the chloroplast stroma were significant. They decreased on addition of glycerate, phosphoglycerate or dihydroxyacetone phosphate. When dihydroxyacetone phosphate and oxaloacetate were added together, ATP levels increased in darkened chloroplasts owing to substrate level phosphorylation. (2) Under illumination with saturating single turnover flashes, oxygen evolution in the presence of phosphoglycerate, whose reduction requires ATP, was no lower on a unit flash basis at the low flash frequency of 2 Hz than at higher frequencies. Quenching of 9-aminoacridine fluorescence, which indicates the formation of a proton gradient in intact chloroplasts, decreased with decreasing flash frequencies, until there was no significant fluorescence quenching at a flash frequency of about 2 Hz. In contrast to intact chloroplasts, broken chloroplasts did not phosphorylate much ADP at the low flash frequency of 2 Hz. (3) Flashing at extremely low frequencies (0.2 Hz) caused ATP hydrolysis rather than ATP synthesis in intact chloroplasts. At higher flash frequencies, synthesis replaced hydrolysis. Still, even at high frequencies (10 Hz), the first flashes of a series of flashes given after a long dark time always decreased chloroplast ATP levels.From these results, it is concluded that the enzyme, which mediates ATP synthesis in the light, is inactive in darkened intact chloroplasts. Its light activation can be separated from the formation of the high energy condition, which results in ATP synthesis. After its activation, the enzyme catalyzes a reversible reaction.  相似文献   

18.
ATP concentrations were measured in isolated intact spinach chloroplasts under various light and dark conditions. The following results were obtained: (1) Even in darkened chloroplasts and in the absence of exogenous substrates, ATP levels in the chloroplast stroma were significant. They decreased on addition of glycerate, phosphoglycerate or dihydroxyacetone phosphate. When dihydroxyacetone phosphate and oxaloacetate were added together, ATP levels increased in darkened chloroplasts owing to substrate level phosphorylation. (2) Under illumination with saturating single turnover flashes, oxygen evolution in the presence of phosphoglycerate, whose reduction requires ATP, was no lower on a unit flash basis at the low flash frequency of 2 Hz than at higher frequencies. Quenching of 9-aminoacridine fluorescence, which indicates the formation of a proton gradient in intact chloroplasts, decreased with decreasing flash frequencies, until there was no significant fluorescence quenching at a flash frequency of about 2 Hz. In contrast to intact chloroplasts, broken chloroplasts did not phosphorylate much ADP at the low flash frequency of 2 Hz. (3) Flashing at extremely low frequencies (0.2 Hz) caused ATP hydrolysis rather than ATP synthesis in intact chloroplasts. At higher flash frequencies, synthesis replaced hydrolysis. Still, even at high frequencies (10 Hz), the first flashes of a series of flashes given after a long dark time always decreased chloroplast ATP levels. From these results, it is concluded that the enzyme, which mediates ATP synthesis in the light, is inactive in darkened intact chloroplasts. Its light activation can be separated from the formation of the high energy condition, which results in ATP synthesis. After its activation, the enzyme catalyzes a reversible reaction.  相似文献   

19.
Plant chloroplasts contain an intricate photosynthetic membrane system, the thylakoids, and are surrounded by two envelope membranes at which thylakoid lipids are assembled. The glycoglycerolipids mono- and digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol as well as phosphatidylglycerol, are present in thylakoid membranes, giving them a unique composition. Fatty acids are synthesized in the chloroplast and are either directly assembled into thylakoid lipids at the envelope membranes or exported to the ER (endoplasmic reticulum) for extraplastidic lipid assembly. A fraction of lipid precursors is reimported into the chloroplast for the synthesis of thylakoid lipids. Thus polar lipid assembly in plants requires tight co-ordination between the chloroplast and the ER and necessitates inter-organelle lipid trafficking. In the present paper, we discuss the current knowledge of the export of fatty acids from the chloroplast and the import of chloroplast lipid precursors assembled at the ER. Direct membrane contact sites between the ER and the chloroplast outer envelopes are discussed as possible conduits for lipid transfer.  相似文献   

20.
R. J. Ellis 《Planta》1970,91(4):329-335
Summary Protein synthesis by chloroplasts isolated under aseptic conditions from Phaseolus vulgaris leaves is inhibited by the bacterial antibiotics spectinomycin, lincomycin, and erythromycin; that by chloroplasts from Nicotiana tabacum leaves is inhibited by spectinomycin and lincomycin but not by erythromycin. Protein synthesis by cytoplasmic ribosomes from plants and animals is not inhibited by these compounds, nor is amino acid activation by the soluble fraction from bean chloroplasts. These results suggest that chloroplast ribosomes possess sites which bind several unrelated bacterial antibiotics and support the idea that chloroplasts originated from prokaryotic cells. These antibiotics may be useful in studying the process of chloroplast formation in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号