共查询到20条相似文献,搜索用时 15 毫秒
1.
Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. 总被引:22,自引:1,他引:22 下载免费PDF全文
Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins. 相似文献
2.
Brabec V Stehlíková K Malina J Vojtiísková M Kaspárková J 《Archives of biochemistry and biophysics》2006,446(1):1-10
The effects of the lesions induced by single, site-specific 1,2-GG or 1,3-GTG intrastrand adducts of cis-diamminedichloroplatinum(II) formed in oligodeoxyribonucleotide duplexes on energetics of DNA were examined by means of differential scanning calorimetry. These effects were correlated with affinity of these duplexes for damaged-DNA binding-proteins XPA and RPA; this affinity was examined by gel electrophoresis. The results confirm that rigid DNA bending is the specific determinant responsible for high-affinity interactions of XPA with damaged DNA, but that an additional important factor, which affects affinity of XPA to damaged DNA, is a change of thermodynamic stability of DNA induced by the damage. In addition, the results also confirm that RPA preferentially binds to DNA distorted so that hydrogen bonds between complementary bases are interrupted. RPA also binds to non-denaturational distortions in double-helical DNA, but affinity of RPA to these distortions is insensitive to alterations of thermodynamic stability of damaged DNA. 相似文献
3.
4.
W Keijzer N G Jaspers P J Abrahams A M Taylor C F Arlett B Zelle H Takebe P D Kinmont D Bootsma 《Mutation research》1979,62(1):183-190
Cells from a xeroderma pigmentosum patient XP2BI who has reached 17 years of age with no keratoses or skin tumours constitute a new, 7th complementation group G. These cells exhibit a low residual level of excision repair, 2% of normal after a UV dose of 5 J/m2 and an impairment of post-replication repair characteristic of excision-defective XPs. They are also sensitive to the lethal effects of UV and defective in host-cell reactivation of UV-irradiated SV40 DNA. 相似文献
5.
J E Cleaver F Cortés L H Lutze W F Morgan A N Player D L Mitchell 《Molecular and cellular biology》1987,7(9):3353-3357
A group A xeroderma pigmentosum revertant with normal sensitivity was created by chemical mutagenesis. It repaired (6-4) photoproducts normally but not pyrimidine dimers and had near normal levels of repair replication, sister chromatid exchange, and mutagenesis from UV light. The rate of UV-induced mutation in a shuttle vector, however, was as high as the rate in the parental xeroderma pigmentosum cell line. 相似文献
6.
Unique cross-link and monoadduct repair characteristics of a xeroderma pigmentosum revertant cell line 总被引:2,自引:0,他引:2
Monoadducts and cross-links formed in DNA of human cells by a psoralen derivative, 4'-hydroxy-methyl-4,5',8-trimethylpsoralen (HMT), have been measured by a new, simple method, based on S1 nuclease digestion of 3H-labeled adducts in DNA, that provides rapid information on the repair of both classes of lesions. Normal human fibroblasts and cells from patients with dyskeratosis congenita and xeroderma pigmentosum (XP) group C were capable of removing both monoadducts and cross-links, whereas XP groups A and D failed to remove either. An XP revertant, isolated from a group A cell line on the basis of an acquired mutagen-induced resistance to ultraviolet light, has the unique property of being capable of removing cross-links but not monoadducts. Consistent with this property, the XP revertant was found to be resistant to cell killing by the cross-linking psoralen derivative, HMT, but as sensitive as its parental cell line to a monofunctional psoralen derivative, 5-methylisopsoralen. 相似文献
7.
Yuliya S. Krasikova Nadejda I. Rechkunova Ekaterina A. Maltseva Irina O. Petruseva Olga I. Lavrik 《Nucleic acids research》2010,38(22):8083-8094
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG. 相似文献
8.
Urs Kuhnlein Siu Sing Tsang Opal Lokken Silvian Tong Daniel Twa 《Bioscience reports》1983,3(7):667-674
Human fibroblasts and HeLa cells contain two major DNA-binding activities for superhelical DNA, which can be separated by phosphocellulose chromatography. The DNA-binding activity which elutes first from the column coelutes with and is probably identical to a single-stranded-DNA-binding activity. The second activity has been characterized previously. It binds preferentially to super-helical DNA containing DNA damage, but does not bind to single-stranded DNA. Five cell lines derived from patients with the repairdeficiency syndrome xeroderma pigmentosum (XP) were analyzed for the presence of these binding activities. Four of the cell lines were from the A-complementation group and one was from the D-complementation group of XP. The binding activity with preference for damaged DNA was present in all cell lines. The single-stranded-DNA-binding activity was present in the XP-D cell line but was absent or reduced in all of the four XP-A cell lines tested. 相似文献
9.
10.
Methylmethanesulphonate has been shown to stimulate an intensive unscheduled DNA synthesis in lymphocytes derived from normal donors as well as in those from patients with xeroderma pigmentosum of the classical form. Somewhat less intensive unscheduled DNA synthesis was observed in cells of a patient suffering from xeroderma pigmentosum. In the case of XPII unscheduled DNA synthesis was greatly reduced which supports the peculiarity of this form of xeroderma pigmentosum. 相似文献
11.
Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein 总被引:3,自引:0,他引:3
XPC is a 940-residue multidomain protein critical for the sensing of aberrant DNA and initiation of global genome nucleotide excision repair. The C-terminal portion of XPC (residues 492-940; XPC-C) has critical interactions with DNA, RAD23B, CETN2, and TFIIH, whereas functional roles have not yet been assigned to the N-terminal portion (residues 1-491; XPC-N). In order to analyze the molecular basis for XPC function and mutational defects associated with xeroderma pigmentosum (XP) disease, a series of stable bacterially expressed N- and C-terminal fragments were designed on the basis of sequence analysis and produced for biochemical characterization. Limited proteolysis experiments combined with mass spectrometry revealed that the full XPC-C is stable but XPC-N is not. However, a previously unrecognized folded helical structural domain was found within XPC-N, XPC(156-325). Pull-down and protease protection assays demonstrated that XPC(156-325) physically interacts with the DNA repair factor XPA, establishing the first functional role for XPC-N. XPC-C exhibits binding characteristics of the full-length protein, including stimulation of DNA binding by physical interaction with RAD23B and CETN2. Analysis of an XPC missense mutation (Trp690Ser) found in certain patients with XP disease revealed that this mutation is associated with a diminished ability to bind DNA. Evidence of contributions to protein interactions from regions in both XPC-N and XPC-C along with recently recognized homologies to yeast PNGase prompted construction of a structural model of a folded XPC core. This model offers key insights into how domains from the two portions of the protein may cooperate in generating specific XPC functions. 相似文献
12.
Hiroshi Hayakawa Kanji Ishizaki Masao Inoue Takashi Yagi Mutsuo Sekiguchi Hiraku Takebe 《Mutation research》1981,80(2)
DNA-repair characteristics of xeroderma pigmentosum belonging to complementation group F were investigated. The cells exhibited an intermediate level of repair as measured in terms of (1) disappearance of T4 endonuclease-V-susceptible sites from DNA, (2) formation of ultraviolet-induced strand breaks in DNA, and (3) ultraviolet-induced unscheduled DNA synthesis during post-irradiation incubation. The impaired ability of XP3YO to perform unscheduled DNA synthesis was restored, to half the normal level, by the concomitant treatment with T4 endonuclease V and ultraviolet-inactivated Sendai virus. It is suggested that xeroderma pigmentosum cells of group F may be defective, at least in part, in the incision step of excision repair. 相似文献
13.
Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C 总被引:8,自引:0,他引:8
L H Mullenders A C van Kesteren C J Bussmann A A van Zeeland A T Natarajan 《Mutation research》1984,141(2):75-82
The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimerspecific endonuclease V of bacteriophage T4. The results were consistent with the data reported by Mansbridge and Hanawalt (1983) and suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts we observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in transcribing regions of the genome. 相似文献
14.
Steven M. Shell Edward K. Hawkins Miaw-Sheue Tsai Aye Su Hlaing Carmelo J. Rizzo Walter J. Chazin 《DNA Repair》2013,12(11):947-953
The Xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results suggest XPC may act as a general sensor of damaged DNA that is capable of recognizing DNA containing lesions not repaired by NER. 相似文献
15.
Repair of damage by ultraviolet radiation in xeroderma pigmentosum cell strains of complementation groups E and F 总被引:1,自引:0,他引:1
The xeroderma pigmentosum fibroblast strains XP2RO, complementation group E, and XP23OS, group F, were compared with normal human primary fibroblasts with regard to repair of damage induced by 254-nm UV. In XP2RO cells, repair DNA synthesis, measured by autoradiography (unscheduled DNA synthesis = UDS), was about 50% of the value found in normal human cells. In these cells also the removal of UV-induced sites recognized by a specific UV-endonuclease proceeds at a reduced rate. By having BUdR incorporated into the repaired regions, followed by the induction of breaks in these patches by 313-nm UV, it was shown that the reduced repair synthesis is not caused by a shorter length of the repair regions in XP2RO, but is solely due to a reduction in the number of sites removed by excision repair. In XP23OS a discrepancy was observed between the level of UDS, which was about 10% of the normal value, and other repair-dependent properties such as UV survival, host-cell reactivation and removal of UV-endonuclease-susceptible sites, which were less reduced than could be expected from the UDS level. However, when UDS was followed over a longer period than the 2 or 3 h normally used in UDS analysis, it appeared that in XP23OS cells, the rate of UDS remained constant whereas the rate decreased in normal control cells. Consequently, the residual level of UDS varies with the period over which it is studied. 相似文献
16.
DNA-dependent ATPase activities in crude extracts prepared from HeLa cells were separated into five peaks by fast protein liquid chromatography Mono Q column chromatography. Similar elution profiles were observed with the extracts from human cells normal in repair and xeroderma pigmentosum cells belonging to complementation groups A through G except for group C. An alteration in elution of one of the five ATPases, designated DNA-dependent ATPase Q1, was observed with a cell line of complementation group C. This alteration was observed with all tested cell lines that belonged to group C. ATPase Q1 in HeLa cell extracts exhibited about 2-fold higher activity with ultraviolet light-irradiated DNA as compared to that with non-irradiated DNA, whereas little difference in the effects of two DNAs was observed with the ATPase activities in the extract from group C cells. 相似文献
17.
Camenisch U Dip R Schumacher SB Schuler B Naegeli H 《Nature structural & molecular biology》2006,13(3):278-284
The function of human XPA protein, a key subunit of the nucleotide excision repair pathway, has been examined with site-directed substitutions in its putative DNA-binding cleft. After screening for repair activity in a host-cell reactivation assay, we analyzed mutants by comparing their affinities for different substrate architectures, including DNA junctions that provide a surrogate for distorted reaction intermediates, and by testing their ability to recruit the downstream endonuclease partner. Normal repair proficiency was retained when XPA mutations abolished only the simple interaction with linear DNA molecules. By contrast, results from a K141E K179E double mutant revealed that excision is crucially dependent on the assembly of XPA protein with a sharp bending angle in the DNA substrate. These findings show how an increased deformability of damaged sites, leading to helical kinks recognized by XPA, contributes to target selectivity in DNA repair. 相似文献
18.
Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. 下载免费PDF全文
L J Lipinski N Hoehr S J Mazur G L Dianov S Sentürker M Dizdaroglu V A Bohr 《Nucleic acids research》1999,27(15):3153-3158
Fluorescent light (FL) has been shown to generate free radicals within cells, however, the specific chemical nature of DNA damage induced by FL has not previously been determined. Using gas chromatography/isotope dilution mass spectrometry, we have detected induction of the oxidative DNA lesions 5-hydroxycytosine (5-OH-Cyt), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4, 6-diamino-5-formamidopyrimidine (FapyAde) in cultured cells irradiated with FL. We followed the repair of these lesions in normal and xeroderma pigmentosum group A (XP-A) cells. 5-OH-Cyt and FapyGua were repaired efficiently in normal cells within 6 h following FL exposure. XP-A cells were unable to repair these oxidative DNA base lesions. Additionally, to compare the repair of oxidative lesions induced by various sources, in vitro repair studies were performed using plasmid DNA damaged by FL, gamma-irradiation or OsO(4)treatment. Whole cell extracts from normal cells repaired damaged substrates efficiently, whereas there was little repair in XP-A extracts. Our data demon-strate defective repair of oxidative DNA base lesions in XP-A cells in vivo and in vitro. 相似文献
19.
Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. 总被引:5,自引:3,他引:5 下载免费PDF全文
Xeroderma pigmentosum (XP) patients are deficient in the excision repair of damaged DNA. Recognition of the DNA lesion appears to involve a nuclear factor that is defective in complementation group E (XPE binding factor). We have now identified a factor in the yeast Saccharomyces cerevisiae that shares many properties with XPE binding factor, including cellular location, abundance, magnesium dependence, and relative affinities for multiple forms of damaged DNA. Yeast binding activity is dependent on photolyase, which catalyzes the photoreactivation of pyrimidine dimers. These results suggest that yeast photolyase may also function as an auxiliary protein in excision repair. Furthermore, XPE binding factor appears to be the human homolog of yeast photolyase. 相似文献
20.
Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G 总被引:15,自引:0,他引:15
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain. 相似文献