首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Food web models describe the patterns of material and energy flow in communities. In classical food web models the state of each population is described by a single variable which represents, for instance, the biomass or the number of individuals that make up the population. However, in a number of models proposed recently in the literature the individual organisms consist of two components. In addition to the structural component there is an internal pool of nutrients, lipids or reserves. Consequently the population model for each trophic level is described by two state variables instead of one. As a result the classical predator-prey interaction formalisms have to be revised. In our model time budgets with actions as searching and handling provide the formulation of the functional response for both components. In the model, assimilation of the ingested two prey components is done in parallel and the extracted energy is added to a predators reserve pool. The reserves are used for vital processes; growth, reproduction and maintenance. We will explore the top-down modelling approach where the perspective is from the community. We will demonstrate that this approach facilitates a check on the balance equations for mass and energy at this level of organization. Here it will be shown that, if the individual is allowed to shrink when the energy reserves are in short to pay the maintenance costs, the growth process has to be 100% effective. This is unrealistic and some alternative model formulations are discussed. The long-term dynamics of a microbial food chain in the chemostat are studied using bifurcation analysis. The dilution rate and the concentration of nutrients in the reservoir are the bifurcation parameters. The studied microbial bi-trophic food chain with two-component populations shows chaotic behaviour.  相似文献   

2.
3.
Nutrient stoichiometric ratios are primary driving factors of planktonic food web dynamics. Ecological stoichiometry theory postulates the elemental ratios of consumer species to be homeostatic, while primary-producer stoichiometry may vary with ambient nutrient availability. The notion of phytoplankton intracellular storage is far from novel, but remains largely unexplored in modeling studies of population dynamics. We constructed a seasonally-unforced, zero-dimensional, nutrient–phytoplankton–zooplankton–detritus (NPZD) model that considers dynamic phytoplankton phosphorus reserves and quasi-dynamic zooplankton stoichiometry. A generic food quality term is used to express seston biochemical composition, ingestibility, and digestibility. We examined the sensitivity of the planktonic food web patterns to light and nutrient availability, zooplankton mortality, and detritus food quality as well as to phytoplankton intracellular storage and zooplankton stoichiometry. Our results reinforce earlier findings that high quality seston exerts a stabilizing effect on food web dynamics. However, we also found that the combination of low algal and high detritus food quality with high zooplankton mortality yielded limit cycles and multiple steady states, suggesting that the heterogeneity characterizing seston nutritional quality may have more complicated ecological ramifications. Our numerical experiments identify resource competition strategies related to nutrient transport rates and internal nutrient quotas that may be beneficial for phytoplankton to persevere in resource-limiting habitats. We also highlight the importance of the interplay between optimal stoichiometry and the factors controlling homeostatic rigidity in zooplankton. In particular, our predictions show that the predominance of phosphorus-rich and tightly-homeostatic herbivores in nutrient-enriched environments with low seston food quality can potentially result in high phytoplankton abundance, high phytoplankton-to-zooplankton ratios, and acceleration of oscillatory dynamics. Generally, our modeling study emphasizes the impact of both intracellular/somatic storage and food quality on prey–predator interactions, pinpointing an important aspect of food web dynamics usually neglected by the contemporary modeling studies.  相似文献   

4.
We developed a mechanistic model of nutrient, phytoplankton, zooplankton and fish interactions to test the effects of phytoplankton food quality for herbivorous zooplankton on planktonic food web processes. When phytoplankton food quality is high strong trophic cascades suppress phytoplankton biomass, the zooplankton can withstand intense zooplanktivory, and energy is efficiently transferred through the food web sustaining higher trophic level production. Low food quality results in trophic decoupling at the plant-animal interface, with phytoplankton biomass determined primarily by nutrient availability, zooplankton easily eliminated by fish predation, and poor energy transfer through the food web. At a given nutrient availability, food quality and zooplanktivory interact to determine zooplankton biomass which in turn determines algal biomass. High food quality resulted in intense zooplankton grazing which favored fast-growing phytoplankton taxa, whereas fish predation favored slow-growing phytoplankton. These results suggest algal food quality for herbivorous zooplankton can strongly influence the nature of aquatic food web dynamics, and can have profound effects on water quality and fisheries production. Handling editor: D. Hamilton  相似文献   

5.
The biomass composition of microorganisms depends on the growth conditions. This study explores whether a two-component model can explain how the elemental and macromolecular composition of the biomass of bacteria varies with the specific growth rate. The model describes the rates at which microorganisms assimilate substrates into reserves and utilize reserves for maintenance and growth. Crucial model assumptions are that biomass consists of reserves and structure and that each of these components has an invariant composition. The composition of biomass can vary when the ratio between reserves and structure varies. Literature data on the macromolecular composition of Escherichia coli, cultivated on various substrates, show that the protein, RNA and DNA content of biomass follow a distinctive trend when plotted as a function of the dry-weight-specific growth rate. This observation leads to the proposition that the macromolecular composition of E. coli depends directly on the growth rate, and only indirectly on the carbon- and energy-source used as substrate. We show that the variation of the macromolecular composition of E. coli over its entire range of growth rates can be described with invariant macromolecular compositions of the reserve and structural components of biomass. The model is also applied to our data on a succinate-limited continuous culture of Paracoccus denitrificans.  相似文献   

6.
Many empirical food webs contain multiple resources, which can lead to the emergence of sub-communities—partitions—in a food web that are weakly connected with each other. These partitions interact and affect the complete food web. However, the fact that food webs can contain multiple resources is often neglected when describing food web assembly theoretically, by considering only a single resource. We present an allometric, evolutionary food web model and include two resources of different sizes. Simulations show that an additional resource can lead to the emergence of partitions, i.e. groups of species that specialise on different resources. For certain arrangements of these partitions, the interactions between them alter the food web properties. First, these interactions increase the variety of emerging network structures, since hierarchical bodysize relationships are weakened. Therefore, they could play an important role in explaining the variety of food web structures that is observed in empirical data. Second, interacting partitions can destabilise the population dynamics by introducing indirect interactions with a certain strength between predator and prey species, leading to biomass oscillations and evolutionary intermittence.  相似文献   

7.
Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.  相似文献   

8.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

9.
Structural sensitivity, namely the sensitivity of a model dynamics to slight changes in its mathematical formulation, has already been studied in some models with a small number of state variables. The aim of this study is to investigate the impact of structural sensitivity in a food web model. Especially, the importance of structural sensitivity is compared to that of trophic complexity (number of species, connectance), which is known to strongly influence food web dynamics. Food web structures are built using the niche model. Then food web dynamics are modeled using several type II functional responses parameterized to fit the same predation fluxes. Food web persistence was found to be mostly determined by trophic complexity. At the opposite, even if food web connectance promotes equilibrium dynamics, their occurrence is mainly driven by the choice of the functional response. These conclusions are robust to changes in some parameter values, the fitting method and some model assumptions. In a one-prey/one-predator system, it was shown that the possibility that multiple stable states coexist can be highly structural sensitive. Quantifying this type of uncertainty at the scale of ecosystem models will be both a natural extension to this work and a challenging issue.  相似文献   

10.
Understanding microbial food web dynamics is complicated by the multitude of competitive or interdependent trophic interactions involved in material and energy flow. Metabolic inhibitors can be used to gain information on the relative importance of trophic pathways by uncoupling selected microbial components and examining the net effect on ecosystem structure and function. A eukaryotic growth inhibitor (cycloheximide), a prokaryotic growth inhibitor (antibiotic mixture), and an inhibitor of photosynthesis (DCMU) were used to examine the trophodynamics of microbial communities from the tidal creek in North Inlet, a salt marsh estuary near Georgetown, South Carolina. Natural microbial communities were collected in the spring, summer, and fall after colonization onto polyurethane foam substrates deployed in the tidal creek. Bacterial abundance and productivity, heterotrophic ciliate and flagellate abundance, and phototrophic productivity, biomass, and biovolume were measured at five time points after inhibitor additions. The trophic responses of the estuarine microbial food web to metabolic inhibitors varied with season. In the summer, a close interdependency among phototrophs, bacteria, and protozoa was indicated, and the important influence of microzooplanktonic nutrient recycling was evident (i.e., a positive feedback loop). In the fall, phototroph and bacteria interactions were competitive rather than interdependent, and grazer nutrient regeneration did not appear to be an important regulatory factor for bacterial or phototrophic activities. The results indicate a seasonal shift in microbial food web structure and function in North Inlet, from a summer community characterized by microbial loop dynamics to a more linear trophic system in the fall. This study stresses the important role of microbial loops in driving primary and secondary production in estuaries such as North Inlet that are tidally dominated by fluctuations in nutrient supply and a summer phytoplankton bloom.  相似文献   

11.
Juha Mikola 《Oecologia》1998,117(3):396-403
Previous theoretical and empirical evidence suggests that species composition within trophic levels may profoundly affect the response of trophic-level biomasses to enhanced basal resources. To test whether species composition of microbivorous nematodes has such an effect in microbial-based soil food webs, I created three microcosm food webs, consisting of bacteria, fungi, bacterial-feeding nematodes (Acrobeloides tricornus, Caenorhabditis elegans), fungal-feeding nematodes (Aphelenchus avenae, Aphelenchoides sp.) and a predatory nematode (Prionchulus punctatus). The food webs differed in species composition at the second trophic level: food web A included A. tricornus and Aph. avenae, food web B included C. elegans and Aphelenchoides sp., and food web AB included all four species. I increased basal resources by adding glucose to half of the replicates of each food web, and sampled microcosms destructively four times during a 22-week experiment to estimate the biomass of organisms at each trophic level. Microbivore species composition significantly affected bacterivore and fungivore biomass but not bacterial, fungal or predator biomass. Greatest bacterivore and fungivore biomass was found in food web A, intermediate biomass in food web AB, and smallest biomass in food web B. Basal resource addition increased the biomass of microbes and microbivores but did not affect predator biomass. Importantly, microbivore species composition did not significantly modify the effect of additional resources on trophic-level biomasses. The presence of a competitor reduced the biomass of A. tricornus and Aph. avenae, in that the biomass of these species was less in food web AB than in food web A, whereas the biomass of C. elegans and Aphelenchoides sp. was not affected by their potential competitors. The biomass of Aph. avenae increased with additional resources in the absence of the competitor only, while the biomass of A. tricornus and Aphelenchoides sp. increased also in the presence of their competitors. The results imply that microbivore species composition may determine the second-level biomass in simple microbe-nematode food webs, but may not significantly affect biomass at other levels or modify the response of trophic-level biomasses to enhanced basal resources. The study also shows that even if the role of predation in a food web is diminished, the positive response of organisms to increased resource availability may still be hindered by competition. Received: 22 June 1998 / Accepted: 28 August 1998  相似文献   

12.
This study aimed to identify differences in selectivity, foraging behaviour and complementary feeding of two benthic consumers (the isopod Idotea emarginata and the snail Hydrobia ulvae) using traditional cell counting as an indicator for algal biomass reduction and stable isotope labelling to detect differences in assimilation and digestion. We hypothesized that even when active feeding preferences of food components are not apparent, passive selectivity via mechanisms such as food assimilation and digestion can be of relevance. Algal biomass was reduced to a similar degree by the grazers independently from grazer and prey combinations without any indication for an active choice of food components. However, the isotope labelling approach indicated that passive selectivity can alter complementary feeding strategies, as we detected shifts in feeding preferences in relation to food quantity and competition. Thus, stable isotope labelling of food components opens up new perspectives in community ecology, allowing assessment of such complex mechanisms as passive selectivity, complementary feeding and competition.  相似文献   

13.
线虫区系分析指示土壤食物网结构和功能研究进展   总被引:10,自引:0,他引:10  
陈云峰  韩雪梅  李钰飞  胡诚 《生态学报》2014,34(5):1072-1084
土壤食物网结构复杂,功能众多,直接测定土壤食物网各功能群生物量并结合数学模型来推断土壤食物网结构和功能,工作量大且分析过程繁琐。线虫生态学的发展为土壤食物网的研究开辟了一条新的思路,即利用线虫区系分析来定性推断食物网的结构和功能。线虫作为土壤中数量最丰富的后生动物,占据着土壤食物网的中心位置,其物种多样性、食性多样性、生活史策略多样性、功能团多样性奠定了其作为土壤食物网结构和功能指示生物的生态学基础。线虫区系分析根据发展历史可以分为个体分类、生活史策略分类、功能团分类和代谢足迹分类四个时期,其中后两个时期主要用于推断土壤食物网结构和功能。基于功能团的线虫区系分析将线虫的食性和生活史策略结合起来,发展出一系列指数来判断土壤食物网的连通性、食物网链长度、外界养分投入情况、分解途径及对外界干扰的响应等。基于代谢足迹的线虫区系分析在功能团分析基础上,加入线虫能流分析,从而定性反映了土壤食物网功能的大小。两者在指示土壤食物网自下而上调节及对植物线虫控制等方面起着重要的作用。  相似文献   

14.
This study describes a model which addresses the processes of ingestion, assimilation, respiration, excretion and growth of copepods as a function of the concentration of food and its elemental composition in terms of carbon and nitrogen (N). Two experimental data sets are used to estimate several parameters of the model concerned with the influence of food quality. The results of the model suggest that the concentration of food and its quality (i.e. the C:N ratio) largely determine copepod growth. Both the experimental data sets and the model output show that low carbon relative to the nitrogen content of food does not limit the production of copepods. Comparing the results of the model to those of a previous model on bacteria suggests large differences between bacterial and copepod physiological responses to a variable quality of the substrate or food. The results of these models suggest that the regeneration of ammonium performed by copepods always favors regenerated primary production, whereas that performed by bacteria, depending on the quality of assimilated substrates, can favor or limit regenerated production.   相似文献   

15.
Nutrient cycling is fundamental to ecosystem functioning. Despite recent major advances in the understanding of complex food web dynamics, food web models have so far generally ignored nutrient cycling. However, nutrient cycling is expected to strongly impact food web stability and functioning. To make up for this gap, we built an allometric and size structured food web model including nutrient cycling. By releasing mineral nutrients, recycling increases the availability of limiting resources for primary producers and links each trophic level to the bottom of food webs. We found that nutrient cycling can provide a significant part of the total nutrient supply of the food web, leading to a strong enrichment effect that promotes species persistence in nutrient poor ecosystems but leads to a paradox of enrichment at high nutrient inputs. The presence of recycling loops linking each trophic level to the basal resources weakly affects species biomass temporal variability in the food web. Recycling loops tend to slightly dampen the destabilising effect of nutrient enrichment on consumer temporal variability while they have opposite effects for primary producers. By considering nutrient cycling, this new model improves our understanding of the response of food webs to nutrient availability and opens perspectives to better link studies on food web dynamics and ecosystem functioning.  相似文献   

16.
Both temperature and terrestrial organic matter have strong impacts on aquatic food‐web dynamics and production. Temperature affects vital rates of all organisms, and terrestrial organic matter can act both as an energy source for lower trophic levels, while simultaneously reducing light availability for autotrophic production. As climate change predictions for the Baltic Sea and elsewhere suggest increases in both terrestrial matter runoff and increases in temperature, we studied the effects on pelagic food‐web dynamics and food‐web efficiency in a plausible future scenario with respect to these abiotic variables in a large‐scale mesocosm experiment. Total basal (phytoplankton plus bacterial) production was slightly reduced when only increasing temperatures, but was otherwise similar across all other treatments. Separate increases in nutrient loads and temperature decreased the ratio of autotrophic:heterotrophic production, but the combined treatment of elevated temperature and terrestrial nutrient loads increased both fish production and food‐web efficiency. CDOM: Chl a ratios strongly indicated that terrestrial and not autotrophic carbon was the main energy source in these food webs and our results also showed that zooplankton biomass was positively correlated with increased bacterial production. Concomitantly, biomass of the dominant calanoid copepod Acartia sp. increased as an effect of increased temperature. As the combined effects of increased temperature and terrestrial organic nutrient loads were required to increase zooplankton abundance and fish production, conclusions about effects of climate change on food‐web dynamics and fish production must be based on realistic combinations of several abiotic factors. Moreover, our results question established notions on the net inefficiency of heterotrophic carbon transfer to the top of the food web.  相似文献   

17.
Food webs can respond in surprising and complex ways to temporary alterations in their species composition. When such a perturbation is reversed, food webs have been shown to either return to the pre‐perturbation community state or remain in the food web configuration that established during the perturbation. Here we report findings from a replicated whole‐lake experiment investigating food web responses to a perturbation and its consecutive reversal. We could identify three distinct community states in the food web that corresponded to the periods before, during and after the perturbation. Most importantly, we demonstrate the establishment of a distinct post‐perturbation food web configuration that differed from both the pre‐ and during‐perturbation communities in phytoplankton biomass and micro‐ and mesozooplankton species composition. We suggest that the pre‐ and post‐perturbation food web configurations may represent two alternative stable community states. We provide explanations for how each of the contrasting communities may be maintained through altered species interactions. These findings add to the discussion of how natural food webs react to environmental change and imply that the range of potential ecosystem dynamics in response to perturbations can be wider and more complex than is often recognized.  相似文献   

18.
The Chukchi Sea is a seasonally ice-covered, marginal Arctic-shelf sea that possesses both large petroleum reserves and abundant biological communities, including migratory mammals and seabirds. We developed a mass balance food web model for the eastern Chukchi Sea to evaluate the trophic structure of this ecosystem and to compare food web properties of the Chukchi Sea to those of other high-latitude marine ecosystems. We compiled data on biomass levels, diet composition, demographic rates (production, consumption), and fishery removals, and used these data to construct an Ecopath trophic mass balance model. The majority of biomass was concentrated in benthic invertebrates and most of the mass flow above trophic level 2.0 was through these groups. We found that density estimates of most fish groups derived from trawl survey data using area-swept methods were insufficient to match the consumptive demands of predators, and that densities needed to be several-fold greater to meet modeled demand. We also used a set of system metrics derived from a common modeling framework to highlight differences in ecosystem structure between the eastern Chukchi Sea and other high-latitude systems. The extent of benthic dominance observed in the eastern Chukchi Sea was unique among the systems examined, both in terms of food web structure and associated mass flows between benthic and pelagic components. In relation to total biomass density, the eastern Chukchi Sea had low production when compared with the other systems, and this lower turnover rate suggests that recovery from disturbance might be slow.  相似文献   

19.
The present paper presents a generalized treatment of the principles of elemental and enthalpy balances which are applied to aerobic fermentation processes. It is shown that strict relations do exist between the various yield factors of biomass or product on substrate, oxygen, carbon dioxide, and between the various maintenance coefficients. These relations are confirmed from the existing body of literature data on yield and maintenance coefficients. Another consequences of the application of elemental balances is the existence of limits for the maximum biomass yield on substrate and oxygen, which depend on the degree of reduction of the substrates with different degree of reduction. It appears from this model that substrates with a high degree of reduction are C limited and substrates with a low degree of reduction are energy limited. Finally the effects of temperature on yield and maintenance coefficients are analyzed from the existing body of literature data. It can be concluded that the maintenance coefficients follow an Arrhenius type of relationship and that yield is temperature independent. The literature data seem to indicate that a degree of reduction of about 4 is optimal for the carbon and energy needs for biomass formation.  相似文献   

20.
Productivity and trophic structure of aquatic ecosystems result from a complex interplay of bottom‐up and top‐down forces that operate across benthic and pelagic food web compartments. Projected global changes urge the question how this interplay will be affected by browning (increasing input of terrestrial dissolved organic matter), nutrient enrichment and warming. We explored this with a process‐based model of a shallow lake food web consisting of benthic and pelagic components (abiotic resources, primary producers, grazers, carnivores), and compared model expectations with the results of a browning and warming experiment in nutrient‐poor ponds harboring a boreal lake community. Under low nutrient conditions, the model makes three major predictions. (a) Browning reduces light and increases nutrient supply; this decreases benthic and increases pelagic production, gradually shifting productivity from the benthic to the pelagic habitat. (b) Because of active habitat choice, fish exert top‐down control on grazers and benefit primary producers primarily in the more productive of the two habitats. (c) Warming relaxes top‐down control of grazers by fish and decreases primary producer biomass, but effects of warming are generally small compared to effects of browning and nutrient supply. Experimental results were consistent with most model predictions for browning: light penetration, benthic algal production, and zoobenthos biomass decreased, and pelagic nutrients and pelagic algal production increased with browning. Also consistent with expectations, warming had negative effects on benthic and pelagic algal biomass and weak effects on algal production and zoobenthos and zooplankton biomass. Inconsistent with expectations, browning had no effect on zooplankton and warming effects on fish depended on browning. The model is applicable also to nutrient‐rich systems, and we propose that it is a useful tool for the exploration of the consequences of different climate change scenarios for productivity and food web dynamics in shallow lakes, the worldwide most common lake type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号