首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNase L and RNA-dependent protein kinase (PKR) are effectors of the interferon antiviral response that share homology in their pseudokinase and protein kinase domains, respectively. Sunitinib is an orally available, ATP-competitive inhibitor of VEGF and PDGF receptors used clinically to suppress angiogenesis and tumor growth. Sunitinib also impacts IRE1, an endoplasmic reticulum protein involved in the unfolded protein response that is closely related to RNase L. Here, we report that sunitinib is a potent inhibitor of both RNase L and PKR with IC(50) values of 1.4 and 0.3 μM, respectively. In addition, flavonol activators of IRE1 inhibited RNase L. Sunitinib treatment of wild type (WT) mouse embryonic fibroblasts resulted in about a 12-fold increase in encephalomyocarditis virus titers. However, sunitinib had no effect on encephalomyocarditis virus growth in cells lacking both PKR and RNase L. Furthermore, oral delivery of sunitinib in WT mice resulted in 10-fold higher viral titers in heart tissues while suppressing by about 2-fold the IFN-β levels. In contrast, sunitinib had no effect on viral titers in mice deficient in both RNase L and PKR. Also, sunitinib reduced mean survival times from 12 to 6 days in virus-infected WT mice while having no effect on survival of mice lacking both RNase L and PKR. Results indicate that sunitinib treatments prevent antiviral innate immune responses mediated by RNase L and PKR.  相似文献   

2.
3.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

4.
The genome of the human delta hepatitis agent is a circular, highly structured single-stranded RNA lacking regular runs of RNA-RNA duplex longer than 15 bp. We have tested the ability of delta agent RNA to participate in reactions with a protein containing a motif which confers the ability to bind double-stranded RNA (dsRNA). Surprisingly, highly purified delta agent RNA preparations from which all traces of contaminating dsRNA have been removed activate PKR, the dsRNA-dependent protein kinase activity of mammalian cells (also known as DAI, P1-eIF-2, and p68 kinase). This behavior is in marked contrast to the interaction of PKR with a number of other highly structured viral single-stranded RNAs, which inhibit, rather than stimulate, activation of this kinase. PKR activation leads to inhibition of protein synthesis in the rabbit reticulocyte lysate system. Paradoxically, delta RNA failed to elicit the expected PKR-mediated inhibition of cell-free translation. Instead, delta RNA interfered with PKR activation and the translational block induced by dsRNA. We conclude that the interaction of PKR and delta agent RNA may represent a new category of protein-RNA interactions involving the dsRNA binding motif.  相似文献   

5.
6.
Viruses of the order Mononegavirales encompass life-threatening pathogens with single-stranded segmented or nonsegmented negative-strand RNA genomes. The RNA genomes are characterized by highly conserved sequences at the extreme untranslated 3' and 5' termini that are most important for virus infection and viral RNA synthetic processes. The 3' terminal genome regions of negative-strand viruses such as vesicular stomatitis virus, Sendai virus, or influenza virus contain a high number of conserved U and G nucleotides, and synthetic oligoribonucleotides encoding such sequences stimulate sequence-dependent cytokine responses via TLR7 and TLR8. Immune cells responding to such sequences include NK cells, NK/T cells, plasmacytoid, and myeloid dendritic cells, as well as monocytes and B cells. Strong Th1 and pro-inflammatory cytokine responses are also induced upon in vivo application of oligoribonucleotides. It appears possible that the presence of highly conserved untranslated terminal regions in the viral genome fulfilling fundamental functions for the viral replication may enable the host to induce directed innate immune defense mechanisms, by allowing pathogen detection through essential RNA regions that the virus cannot readily mutate.  相似文献   

7.
NADPH oxidase is a critical regulator of both antimicrobial host defense and inflammation. Activated in nature by microbes and microbial-derived products, the phagocyte NADPH oxidase is rapidly assembled, and generates reactive oxidant intermediates (ROIs) in response to infectious threat. Chronic granulomatous disease (CGD) is an inherited disorder of the NADPH oxidase characterized by recurrent and severe bacterial and fungal infections, and pathology related to excessive inflammation. Studies in CGD patients and CGD mouse models indicate that NADPH oxidase plays a key role in modulating inflammation and injury that is distinct from its antimicrobial function. The mechanisms by which NADPH oxidase mediates killing of pathogens and regulation of inflammation have broad relevance to our understanding of normal physiological immune responses and pathological states, such as acute lung injury and bacterial or fungal infections.  相似文献   

8.
Regulation of innate immunity by Rho GTPases   总被引:19,自引:0,他引:19  
Leukocytes are key cellular components of innate immunity. These phagocytic cells respond to bacteria at sites of infection through chemotactic sensing and directed motility regulated by Rho GTPases. The development of sensitive probes of Rho GTPase dynamics has provided insights into the temporal and spatial aspects of GTPase regulation during chemotaxis and subsequent microbial phagocytosis. The resulting destruction of ingested bacteria by means of reactive oxygen species (ROS) depends on a Rac-regulated "molecular switch" that is modulated by antagonistic crosstalk involving Cdc42. Recent studies of leukocytes derived from Rac1- and Rac2-knockout mice have shown that these highly homologous GTPases have unique biological roles. An understanding of the biochemical basis for such distinct activities should provide novel insights into the molecular details of Rho GTPase function and regulation in innate immunity.  相似文献   

9.
Goh KC  deVeer MJ  Williams BR 《The EMBO journal》2000,19(16):4292-4297
Protein kinase RNA-regulated (PKR) is an established component of innate antiviral immunity. Recently, PKR has been shown to be essential for signal transduction in other situations of cellular stress. The relationship between PKR and the stress-activated protein kinases (SAPKs), such as p38 mitogen-activated protein kinase (MAPK), is not clear. Using embryonic fibroblasts from PKR wild-type and null mice, we established a requirement for PKR in the activation of SAPKs by double-stranded RNA, lipopolysaccharide (LPS) and proinflammatory cytokines. This does not reflect a global failure to activate SAPKs in the PKR-null background as these kinases are activated normally by anisomycin and other physicochemical stress. Activation of p38 MAPK was restored in immortalized PKR-null cells by reconstitution with human PKR. We also show that LPS induction of interleukin-6 and interleukin-12 mRNA is defective in PKR-null cells, and that production of these cytokines is impaired in PKR-null mice challenged with LPS. Our findings indicate, for the first time, that PKR is required for p38 MAPK signaling and plays a potentially important role in the innate response against bacterial endotoxin.  相似文献   

10.
11.
Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns (PAMPs). The members of TLR family selectively utilize adaptor proteins MyD88, TRIF, TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon. These mediators not only control innate immunity but also direct subsequently developed adaptive immunity. TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.  相似文献   

12.
TAR RNA binding protein (TRBP) belongs to an RNA binding protein family that includes the double-stranded RNA-activated protein kinase (PKR), Drosophila Staufen and Xenopus xlrbpa. One member of this family, PKR, is a serine/threonine kinase which has anti-viral and anti-proliferative effects. In this study we show that TRBP is a cellular down-regulator of PKR function. Assaying expression from an infectious HIV-1 molecular clone, we found that PKR inhibited viral protein synthesis and that over-expression of TRBP effectively countered this inhibition. In intracellular and in cell-free assays we show that TRBP directly inhibits PKR autophosphorylation through an RNA binding-independent pathway. Biologically, TRBP serves a growth-promoting role; cells that overexpress TRBP exhibit transformed phenotypes. Our results demonstrate the oncogenic potential of TRBP and are consistent with the notion that intracellular PKR function contributes physiologically towards regulating cellular proliferation.  相似文献   

13.
Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon.These mediators not only control innate immunity but also direct subsequently developed adaptive immunity...  相似文献   

14.
Protein kinase regulated by RNA (PKR) plays critical roles in cell growth and apoptosis and is implicated as a potential pathogenic factor of Alzheimer's, Parkinson's, and Huntington's diseases. Here we report that this proapoptotic kinase is also involved in Fanconi anemia (FA), a disease characterized by bone marrow (BM) failure and leukemia. We have used a BM extract to show that three FA proteins, FANCA, FANCC, and FANCG, functionally interact with the PKR kinase, which in turn regulates translational control. By using a combined immunoprecipitation and reconstituted kinase assay, in which an active PKR kinase complex was captured from a normal cell extract, we demonstrated functional interactions between the FA proteins and the PKR kinase. In primary human BM cells, mutations in the FANCA, FANCC, and FANCG genes markedly increase the amount of PKR bound to FANCC, and this PKR accumulation is correlated with elevated PKR activation and hypersensitivity of BM progenitor cells to growth repression mediated by the inhibitory cytokines interferon-gamma and tumor necrosis factor-alpha. Specific inhibition of PKR by 2-aminopurine in these FA BM cells attenuates PKR activation and apoptosis induction. In lymphoblasts derived from an FA-C patient, overexpression of a dominant negative mutant PKR (PKRK296R) suppressed PKR activation and apoptosis induced by interferon-gamma and tumor necrosis factor-alpha. Furthermore, by using genetically matched wild-type and PKR-null cells, we demonstrated that forced expression of a patient-derived FA-C mutant (FANCCL554P) augmented double-stranded RNA-induced PKR activation and cell death. Thus, inappropriate activation of PKR as a consequence of certain FA mutations might play a role in bone marrow failure that frequently occurred in FA.  相似文献   

15.
Many neutrophil functions are mediated by PtdIns(3,4,5)P3 that exerts its role by mediating protein translocation via binding to their PH-domains. Inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) binds the same PH domain, competes for its binding to PtdIns(3,4,5)P3, and thus negatively regulates PtdIns(3,4,5)P3 signaling. In neutrophils, chemoattractant stimulation triggers rapid elevation in Ins(1,3,4,5)P4 level. Depletion of Ins(1,3,4,5)P4 by deleting InsP3KB, the major enzyme producing Ins(1,3,4,5)P4 in neutrophils, augments PtdIns(3,4,5)P3 downstream signals, leading to enhanced sensitivity to chemoattractant stimulation, elevated superoxide production, and enhanced neutrophil recruitment to inflamed peritoneal cavity. InsP3KB gene is also expressed in hematopoietic stem/progenitor cells. In InsP3KB null mice, the bone marrow granulocyte monocyte progenitor (GMP) population is expanded and the proliferation of GMP cells is accelerated. As results, neutrophil production in the bone marrow is enhanced and peripheral blood neutrophil count is elevated. Ins(1,3,4,5)P4 also plays a role in maintaining neutrophil survival. Depletion of Ins(1,3,4,5)P4 leads to accelerated neutrophil spontaneous death. Finally, InsP3KB and Ins(1,3,4,5)P4 are essential components in bacterial killing by neutrophils. Despite of the augmented neutrophil recruitment, the clearance of bacteria in the InsP3KB knockout mice is significantly impaired. Collectively, these findings establish InsP3KB and its product Ins(1,3,4,5)P4 as essential modulators of neutrophil function and innate immunity.  相似文献   

16.
17.
Translation of the hepatitis C genome is mediated by internal ribosome entry on the structurally complex 5' untranslated region of the large viral RNA. Initiation of protein synthesis by this mechanism is independent of the cap-binding factor eIF4E, but activity of the initiator Met-tRNA(f)-binding factor eIF2 is still required. HCV protein synthesis is thus potentially sensitive to the inhibition of eIF2 activity that can result from the phosphorylation of the latter by the interferon-inducible, double-stranded RNA-activated protein kinase PKR. Two virally encoded proteins, NS5A and E2, have been shown to reduce this inhibitory effect of PKR by impairing the activation of the kinase. Here we present evidence for a third viral strategy for PKR inhibition. A region of the viral RNA comprising part of the internal ribosome entry site (IRES) is able to bind to PKR in competition with double-stranded RNA and can prevent autophosphorylation and activation of the kinase in vitro. The HCV IRES itself has no PKR-activating ability. Consistent with these findings, cotransfection experiments employing a bicistronic reporter construct and wild-type PKR indicate that expression of the protein kinase is less inhibitory towards HCV IRES-driven protein synthesis than towards cap-dependent protein synthesis. These data suggest a dual function for the viral IRES, with both a structural role in promoting initiation complex formation and a regulatory role in preventing inhibition of initiation by PKR.  相似文献   

18.
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.  相似文献   

19.
Innate immune responses are the first line of defence for an organism to restrict invading pathogens. They fulfil two main functions, namely detection of the pathogen to successively alarm the appropriate components of the immune system and early inhibition of the infection to prevent demise of the infected organism before a more tailored immune response, usually mediated by the adaptive immune system, can be mounted. Autophagy and phagocytosis, modified by the autophagic core machinery, contribute to these functions by regulating pathogen detection, influencing the production of innate immune mediators and directly restricting intracellular and extracellular pathogens as an effector mechanism of innate immunity. These aspects of the involvement of mainly macroautophagy in innate immune responses will be discussed in this review.  相似文献   

20.
Protein kinase signaling networks in plant innate immunity   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号