首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Starting from the information on ovarian cancer provided by the mainstream publications, we construct a review focusing on the following issues: (i) the genetic profile, (ii) the role of the epithelial-mesenchymal transition in the acquirement of malignant features, (iii) the controversial hypothesis regarding the origin, and (iv) the involvement of the immune system in the tumoral microenvironment. Advances in the decipherment at the genetic level in the pathogenic mechanisms progressively lead to the idea of a genetic signature for the ovarian cancer. Moreover, the complementary approaches oriented towards the decryption of the intrinsic structure of the expressed molecules and, implicitly, the development of proteomics open new perspectives for an early diagnosis and an appropriate treatment. The research on the epithelial-mesenchymal transition (mainly those exploring the signaling pathways responsible for the switch between the loss of the epithelial characteristics and the gain of a mesenchymal cell phenotype, with results in the amplification of differentiation, motility and tumoral invasion) allow a deeper understanding of the complex pathogenic mechanism which governs ovarian carcinogenesis. The classic conception of ovarian cancer pathogeny, based on the role of the ovarian surface epithelium, is currently reconsidered, and a novel hypothesis is formulated, which supports direct involvement of the Fallopian tubes for the serous type. Although recent research suggests the implication of immune/inflammatory cells by specific mechanisms in ovarian cancer pathogenesis, there is yet reliable evidence concerning their modality of direct action and/or modulation of tumoral growth. Thus, ovarian carcinogenesis remains a research challenge, due to still numerous unknown factors involved in the malignant transformation sequences, originating from the genetic-molecular alterations and reflected by cellular and tissue expression patterns.  相似文献   

2.
The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.  相似文献   

3.
Motor impairments are a common feature of many neurodevelopmental disorders; in fact, over 50% of children with Attentional Deficit Hyperactivity Disorder or Autism Spectrum Disorder may have a co‐occurring diagnosis of developmental coordination disorder (DCD). DCD is a neurodevelopmental disorder of unknown etiology that affects motor coordination and learning, significantly impacting a child's ability to carry out everyday activities. Animal models play an important role in scientific investigation of behaviour and the mechanisms and processes that are involved in control of motor actions. The purpose of this paper is to present an approach in the mouse directed to gain behavioral and genetic insights into DCD that is designed with high face validity, construct validity and predictive validity. Pre‐clinical and clinical expertise is used to establish a set of scientific criteria that the model will meet in order to investigate the potential underlying causes of DCD.  相似文献   

4.
During the past year studies with mouse models have significantly clarified our understanding of atherosclerosis. Noteworthy achievements include: the discovery of a number of novel genes and pathways; new evidence emphasizing the role of lymphocytes in atherogenesis; the development of mouse models exhibiting advanced lesions with evidence of thrombosis; and new results indicating an anti-atherogenic effect of testosterone.  相似文献   

5.
Fanconi anaemia (FA) is a rare autosomal recessive or X-linked inherited disease characterised by an increased incidence of bone marrow failure (BMF), haematological malignancies and solid tumours. Cells from individuals with FA show a pronounced sensitivity to DNA interstrand crosslink (ICL)-inducing agents, which manifests as G2-M arrest, chromosomal aberrations and reduced cellular survival. To date, mutations in at least 15 different genes have been identified that cause FA; the products of all of these genes are thought to function together in the FA pathway, which is essential for ICL repair. Rapidly following the discovery of FA genes, mutant mice were generated to study the disease and the affected pathway. These mutant mice all show the characteristic cellular ICL-inducing agent sensitivity, but only partially recapitulate the developmental abnormalities, anaemia and cancer predisposition seen in individuals with FA. Therefore, the usefulness of modelling FA in mice has been questioned. In this Review, we argue that such scepticism is unjustified. We outline that haematopoietic defects and cancer predisposition are manifestations of FA gene defects in mice, albeit only in certain genetic backgrounds and under certain conditions. Most importantly, recent work has shown that developmental defects in FA mice also arise with concomitant inactivation of acetaldehyde metabolism, giving a strong clue about the nature of the endogenous lesion that must be repaired by the functional FA pathway. This body of work provides an excellent example of a paradox in FA research: that the dissimilarity, rather than the similarity, between mice and humans can provide insight into human disease. We expect that further study of mouse models of FA will help to uncover the mechanistic background of FA, ultimately leading to better treatment options for the disease.  相似文献   

6.
Keloid scarring is a dermal fibroproliferative response characterized by excessive and progressive deposition of collagen; aetiology and molecular pathology underlying keloid formation and progression remain unclear. Genetic predisposition is important in the pathogenic processes of keloid formation, however, environmental factors and epigenetic mechanisms may also play pivotal roles. Epigenetic modification is a recent area of investigation in understanding the molecular pathogenesis of keloid scarring and there is increasing evidence that epigenetic changes may play a role in induction and persistent activation of fibroblasts in keloid scars. Here we have reviewed three epigenetic mechanisms: DNA methylation, histone modification and the role of non‐coding RNAs. We also review the evidence that these mechanisms may play a role in keloid formation ‐ in future, it may be possible that epigenetic markers may be used instead of prognostic or diagnostic markers here. However, there is a significant amount of work required to increase our current understanding of the role of epigenetic modification in keloid disease.  相似文献   

7.
8.
Reaching new heights: insights into the genetics of human stature   总被引:2,自引:0,他引:2  
Human height is a highly heritable, classic polygenic trait. Until recently, there had been limited success in identifying the specific genetic variants that explain normal variation of human height. The advent of large-scale genome-wide association studies, however, has led to dramatic progress. In the past 18 months, the first robust common variant associations were identified and there are now 44 loci known to influence normal variation of height. In this review, we summarize this exciting recent progress, discuss implicated biological pathways, the overlap with monogenic growth and skeletal dysplasia syndromes, links to disease and insights into the genetic architecture of this model polygenic trait. We also discuss the strong probability of finding several hundred more such loci in the near future.  相似文献   

9.
10.
Human diseases of telomerase dysfunction: insights into tissue aging   总被引:2,自引:1,他引:1  
There are at least three human diseases that are associated with germ-line mutations of the genes encoding the two essential components of telomerase, TERT and TERC. Heterozygous mutations of these genes have been described for patients with dyskeratosis congenita, bone marrow failure and idiopathic pulmonary fibrosis. In this review, we will detail the clinical similarities and difference of these diseases and review the molecular phenotypes observed. The spectrum of mutations in TERT and TERC varies for these diseases and may in part explain the clinical differences observed. Environmental insults and genetic modifiers that accelerate telomere shortening and increase cell turnover may exaggerate the effects of telomerase haploinsufficiency, contributing to the variability of age of onset as well as tissue-specific organ pathology. A central still unanswered question is whether telomerase dysfunction and short telomeres are a much more prominent factor than previously suspected in other adult-onset, age-related diseases. Understanding the biological effects of these mutations may ultimately lead to novel treatments for these patients.  相似文献   

11.
Brain reward circuitry: insights from unsensed incentives   总被引:26,自引:0,他引:26  
Wise RA 《Neuron》2002,36(2):229-240
The natural incentives that shape behavior reach the central circuitry of motivation trans-synaptically, via the five senses, whereas the laboratory rewards of intracranial stimulation or drug injections activate reward circuitry directly, bypassing peripheral sensory pathways. The unsensed incentives of brain stimulation and intracranial drug injections thus give us tools to identify reward circuit elements within the associational portions of the CNS. Such studies have implicated the mesolimbic dopamine system and several of its afferents and efferents in motivational function. Comparisons of natural and laboratory incentives suggest hypotheses as to why some habits become compulsive and give insights into the roles of reinforcement and of prediction of reinforcement in habit formation.  相似文献   

12.
13.
14.
Neurobiology of posttraumatic stress disorder   总被引:3,自引:0,他引:3  
Recent advances on the neurobiology of posttraumatic stress disorder include: the utilization of functional brain imaging; the incorporation of cross-system research including neuroendocrine (hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes), neurochemical (corticotropin-releasing factor, norepinephrine, serotonin, endogenous opiates), and neuroimmunological (humoral and cellular immunity) systems; the expansion beyond exclusive study of combat veterans to include posttraumatic stress disorder patients suffering from noncombat traumas; and the development of animal models of traumatic stress.  相似文献   

15.
In the past few years several spontaneous or engineered mouse models with mutations in Ca2+ channel genes have become available, providing a powerful approach to defining Ca2+ channel function in vivo. There have been recent advances in outlining the phenotypes and in the functional analysis of mouse models with mutations in genes encoding the pore-forming subunits of Ca(V)2.1 (P/Q-type), Ca(V)2.2 (N-type) and Ca(V)2.3 (R-type) Ca2+ channels, the channels involved in controlling neurotransmitter release at mammalian synapses. These data indicate that Ca(V)2.1 channels have a dominant and efficient specific role in initiating fast synaptic transmission at central excitatory synapses in vivo, and suggest that the Ca(V)2.1 channelopathies are primarily synaptic diseases. The different disorders probably arise from disruption of neurotransmission in specific brain regions: the cortex in the case of migraine, the thalamus in the case of absence epilepsy and the cerebellum in the case of ataxia.  相似文献   

16.
Associative learning induces physical changes to a network of cells, known as the memory engram. Fear is widely used as a model to understand the circuit motifs that underpin associative memories. Recent advances suggest that the distinct circuitry engaged by different conditioned stimuli (e.g. tone vs. context) can provide insights into what information is being encoded in the fear engram. Moreover, as the fear memory matures, the circuitry engaged indicates how information is remodelled after learning and hints at potential mechanisms for consolidation. Finally, we propose that the consolidation of fear memories involves plasticity of engram cells through coordinated activity between brain regions, and the inherent characteristics of the circuitry may mediate this process.  相似文献   

17.
Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis.  相似文献   

18.
Although effective in the short-term, clinical solid-organ transplantation has not achieved its goals as a long-term treatment for patients with end-stage organ failure. Development of so-called chronic transplant dysfunction (CTD)is now recognised as the predominant cause of allograft loss long-term (after the first post-operative year) following transplantation. CTD has the remarkable histological feature that the luminal areas of intragraft arteries become obliterated, predominantly with vascular smooth muscle cells intermingled with some inflammatory cells. The development of this transplant vasculopathy,referred to as transplant arteriosclerosis (TA), is a multifactorial process and many risk factors have been identified. However, the precise pathogenetic mechanisms leading to TA are largely unknown and, as a result, current prevention and treatment protocols are inadequate. This review discusses the risk factors for TA and current views on the pathogenetic mechanisms leading to this vasculopathy. We argue here that host-derived cells contribute to the development of these vascular lesions, and propose that TA results from a normal vascular repair process that proceeds beyond the needs of functional repair. Guided by the proposed sequence of events, we finally discuss possible directions for future intervention strategies to prevent TA after solid-organ transplantation.  相似文献   

19.
20.
GnRH deficiency: new insights from genetics   总被引:3,自引:0,他引:3  
The acquisition of a sexually dimorphic phenotype is a critical event in mammalian development. Hypogonadotropic hypogonadism (HH) results from impaired secretion of GnRH. The patients display with delayed puberty, micropenis and cryptorchidism in the male reflecting gonadotropin insufficiency, and amenorrhea in the female. Kallmann's syndrome (KS) is defined by the association of HH and anosmia or hyposmia (absent smelling sense). Segregation analysis in familial cases has demonstrated diverse inheritance patterns, suggesting the existence of several genes regulating GnRH secretion. The X-linked form of the disease was associated with a genetic defect in the KALI gene located on the Xp22.3 region. KAL1 gene encodes an extracellular matrix glycoprotein anosmin-1, which facilitates neuronal growth and migration. Abnormalities in the migratory processes of the GnRH neurons with the olfactory neurons explain the association of HH with anosmia. Recently, mutations in the FGF recepteur 1 (FGFR1) gene were found in KS with autosomal dominant mode of inheritance. The role of FGFR1 in the function of reproduction requires further investigation. Besides HH with anosmia, there are isolated HH (IHH). No human GnRH mutations have been reported although hypogonadal mice due to a GnRH gene deletion exist. In patients with idiopathic HH and without anosmia an increasing number of GnRH receptor (GnRHR) mutations have been described which represent about 50% of familial cases. The clinical features are highly variable and there is a good relationship between genotype and phenotype. A complete loss of function is associated with the most severe phenotype with resistance to pulsatile GnRH treatment, absence of puberty and cryptorchidism in the male. In contrast, milder loss of function mutations causes incomplete failure of pubertal development. The preponderant role of GnRH in the secretion of LH by the gonadotrophs explains the difference of the phenotype between male and female with partial GnRH resistance. Affected females can have spontaneous telarche and normal breast development while affected males exhibit no pubertal development but normal testis volume, a feature described as "fertile-eunuch". High-dose pulsatile GnRH has been used to induce ovulation. Another gene, called GPR54, responsible for idiopathic HH has been recently described by segregation analysis in two different consanguineous families. The GPR54 gene is an orphan receptor, and its putative ligand is the product of the KISS-1 gene, called metastine. Their roles in the function of reproduction are still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号