首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Small Ruminant Research》2010,90(2-3):185-192
Selenium (Se) is an essential trace element in animal nutrition, and exerts multiple actions related to animal production, fertility and disease prevention. Glutathione peroxidase (GSH-PX) enzyme was the first proven selenoenzyme that can prevent oxidative damage of the cellular membrane. Actually more than 30 selenoenzymes have been described and a hierarchy process for expression in the animal has been established. White muscle disease (WMD) was the first recognized condition associated with Se deficiency. WMD causes new born mortality, especially in ruminants, and impaired production condition in growing and adult animals. Selenium is critical to thyroid hormone synthesis and it is also very important for converting T4 (thyroxin inactive form) to T3 (active form). A good immune response requires Se too. Selenium status in soil, plants and animal blood and tissue can be used in the diagnosis of Se deficiency. Diverse forms of Se supplements are available, but many factors affect their activity and efficacy, such as its chemical form and animal's health and production condition. The relationships between foetus Se metabolism and pregnant dam Se status are critical for productivity and need further research.  相似文献   

2.
Selenium deficiency causes oxidative stress and impairs steroidogenesis in vitro. Leptin is closely related to the hypothalamo-pituitary-adrenal (HPA) axis. Leptin inhibits the HPA axis at the central level while corticosteroids have been shown to stimulate leptin secretion in most studies. We hypothesized that oxidative stress impairs adrenal steroidogenesis and decreases leptin production in vivo. The goal of this study was to investigate in rats the effects of selenium deficiency and oxidative stress on adrenal function and on leptin concentrations. Weanling rats were fed a selenium-deficient (Se-) or selenium-sufficient (Se+) diet for 4-10 weeks. Selenium deficiency caused a marked decrease in liver (> or = 99%) and adrenal (> or = 81%) glutathione peroxidase (GPx) activities. Selenium deficiency did not affect basal and short-term adrenocorticotropin (ACTH) stimulated corticosterone or leptin concentrations. In contrast, after long-term ACTH stimulation, selenium deficiency caused a doubling in adrenal isoprostane content and blunted the increase in corticosterone and leptin concentrations observed in Se+ animals. Plasma leptin concentrations were 50% lower in Se- compared to Se+ animals following long-term ACTH. Our results suggest that oxidative stress causes a decrease in circulating corticosterone in response to ACTH, and, as a consequence, a decrease in plasma leptin concentrations.  相似文献   

3.
Preventing cognitive impairment and dementia in the elderly is a major public health challenge for our century and all hypotheses should be explored. Selenium (Se) is one of the factors that may affect the risk of cognitive decline. Its importance in the health and aging process has been documented. Because of the potential of selenoproteins to protect against oxidative stress, Se raises significant expectations for the prevention of chronic diseases including cancer, cardiovascular disease, and type 2 diabetes conditions commonly associated with oxidative stress. Thus, the relationships between Se and cognitive impairment or dementia can be examined through vascular risk factors for dementia, with particular interest in diabetes and dyslipidemia. In addition, in cases of Se deficiency, the brain is the organ that remains Se replete the longest suggesting that Se plays an important role in brain functions. This article presents results obtained in the frame of a longitudinal study on Se and cognitive impairment. They are consistent with the hypothesis that low Se status is a risk factor for cognitive decline even after taking into account vascular risk factors. The concomitant evolution between plasma Se decrease over a 9-year period and cognitive decline suggested that optimal Se status is potentially important to maintain neuropsychological functions in aging people. However, as our understanding of Se biology is incomplete, epidemiological studies are needed to define the groups of population that could benefit from Se supplementation.  相似文献   

4.
Selenium (Se) and vitamin E are antioxidant micronutrients. Se functions through selenoproteins and vitamin E reacts with oxidizing molecules in membranes. The relationship of these micronutrients with the Nrf2-antioxidant response element (ARE) pathway was investigated using ARE-reporter mice and Nrf2-/- mice. Weanling males were fed Se-deficient (0 Se), vitamin E-deficient (0 E), or control diet for 16 or 22 weeks. The ARE reporter was elevated 450-fold in 0 Se liver but was not elevated in 0 E liver. Antioxidant enzymes induced by Nrf2-ARE (glutathione S-transferase (GST), NAD(P)H quinone oxidoreductase (NQOR), and heme oxygenase-1 (HO-1)) were elevated in 0 Se livers but not in 0 E livers. Deletion of Nrf2 had varying effects on the inductions, with GST induction being abolished by it but induction of NQOR and HO-1 still occurring. Thus, Se deficiency, but not vitamin E deficiency, induces a number of enzymes that protect against oxidative stress and modify xenobiotic metabolism through Nrf2-ARE and other stress-response pathways. We conclude that Se deficiency causes cytosolic oxidative stress but that vitamin E deficiency does not. This suggests that the oxidant defense mechanisms in which these antioxidant nutrients function are independent of one another.  相似文献   

5.
微生物硒代谢机制研究进展   总被引:9,自引:0,他引:9  
硒(Se)是人与动物生命必需的微量元素,在医学保健和工业制造方面有着广泛的应用。硒在环境中有四种价态,包括硒酸盐Se O42-(+6)、亚硒酸盐Se O32-(+4)、单质硒Se0(0)和硒化物Se2-(-2)。微生物在硒的形态转化中扮演了重要的角色,影响着环境中硒的生物地球化学循环。本文主要从自然界中硒的循环以及微生物与硒代谢机制两个方面阐述微生物对硒的生物地球化学循环的重要性。  相似文献   

6.
Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.  相似文献   

7.
Wild barley (Hordeum spontaneum), the progenitor of cultivated barley, is an important genetic resource for cereal improvement. Selenium (Se) is an essential trace mineral for humans and animals with antioxidant, anticancer, antiarthropathy, and antiviral effects. In the current study, the grain Se concentration (GSeC) of 92 H. spontaneum genotypes collected from nine populations representing different habitats in Israel was investigated in the central area of Guizhou Province, China. Remarkable variations in GSeC were found between and within populations, ranging from 0 to 0.387 mg kg−1 among the 92 genotypes with an average of 0.047 mg kg−1. Genotype 20_C from the Sede Boqer population had the highest GSeC, while genotype 25_1 from the Atlit population had the lowest. The mean value of GSeC in each population varied from 0.010 to 0.105 mg kg−1. The coefficient of variation for each population ranged from 12% to 163%. Significant correlations were found between GSeC and 12 ecogeographical factors out of 14 studied. Habitat soil type also significantly affected GSeC. The wild barley exhibited wider GSeC ranges and greater diversity than its cultivated counterparts. The higher Se grain concentrations found in H. spontaneum populations suggest that wild barley germplasm confer higher abilities for Se uptake and accumulation, which can be used for genetic studies of barley nutritional value and for further improvement of domesticated cereals.  相似文献   

8.
9.

Background

Selenium (Se) is not an essential element for plants, although it can benefit their growth and survival in some envionments. Excess tissue Se concentrations are toxic. The ability to sequester Se in vacuoles, synthesise non-toxic Se metabolites, or volatilise Se compounds determines maximum tissue Se concentrations and the ability to colonise seleniferous soils.

Scope of review

This review first classifies plant species on their abilities to accumulate Se in their tissues and to colonise seleniferous soils. It then presents our knowledge of Se uptake by roots and its movement within the plant, the primary and secondary metabolism of Se in plants, effects of Se on sulfur and nitrogen metabolism, and the detoxification of excessive Se by plants. Finally, it presents a current hypothesis for the evolution of seleniferous flora.

Major conclusions

Selenium and sulfur share the same primary metabolism. When grown in the same environment, most plant species have similar tissue Se/S quotients. However, Se-hyperaccumulator species, which can have tissue Se concentrations >1?mg?g?1 dry matter, have larger Se/S quotients than other species. Secondary Se metabolism determines differences in tissue Se concentration among plant species. Among non-hyperaccumulator species, alliums and brassicas have particularly large tissue Se concentrations. Selenium hyperaccumulation results from the effective metabolic detoxification of Se in tissues.

General significance

Differences in Se metabolism determine the maximum Se concentrations in plant tissues, which is important for the delivery of Se to diets of herbivores and for the evolution of plant species to colonise seleniferous soils.  相似文献   

10.
植物硒吸收转化机制及生理作用研究进展   总被引:3,自引:0,他引:3  
硒是大多微生物、动物及人类的必要微量元素,但其在植物生长发育中的生理作用至今存在争议.较低浓度硒具有促进植物生长、提高植物耐受能力的功能,而大部分植物在高浓度下表现出中毒现象.随着人类对摄入硒及环境硒污染问题的认识加深,作物硒生物强化与硒污染植物修复问题引起重视,推动了对硒在植物中的吸收积累及代谢调控的研究.近年来对植物硒吸收及转化的研究表明,不同硒水平下植物对硒吸收积累及生理响应存在差异,土壤环境因素对植物硒吸收及转化具有重要影响,对高聚硒植物硒代谢研究逐渐揭示出硒在植物体内的转化过程和调控机理等.本文总结了目前硒生物强化与植物修复方面的研究进展,对环境中硒分布特点、植物硒吸收及其影响因素、植物体内硒转化及其过程调控关键酶,以及硒在植物中的生理作用等进行了综述,并对植物硒生理及分子机制未来研究方向进行展望.  相似文献   

11.
12.
Selenium (Se) deficiency causes injury of diversified tissues and cells, including livers, hearts, skeletal muscles, and erythrocytes. The aim of the present study is to explore the molecular mechanism of erythrocyte hemolysis due to Se deficiency in broilers. One hundred and eighty broilers (male/female, 1 day old) were randomly divided into two groups and fed with either a normal Se content diet (C group, 0.2 mg Se/kg) or a Se-deficient diet (ED group, 0.008 mg Se/kg) for 45 days. During the trial period of 15–30 days, biological properties such as osmotic fragility, fluidity, phospholipid components of cell membrane, adenosine triphosphatase activities, and antioxidant function of erythrocytes in broilers were examined. Moreover, the messenger RNA (mRNA) expressions of genes associated with inflammation, glycometabolism, and avian uncoupling protein (avUCP) were detected. We found that compared with the C group, hemolysis rate, degree of polarization, and microviscosity of erythrocytes were increased in broilers of the ED group. The composition of erythrocyte membrane lipids was changed. Meanwhile, the antioxidant function of erythrocytes was weakened and mRNA levels of inflammatory genes were stimulated by Se deficiency (p < 0.05). In addition, mRNA expressions of rate-limiting enzymes in glycometabolism were effected and avUCP mRNA level was downregulated (p < 0.05) in the ED group. It has been concluded from the results that oxidative stress, inflammatory response, and glycometabolism disorder lead to erythrocyte hemolysis by changing the structure and function of erythrocyte membrane in ED broilers suffered from Se deficiency.  相似文献   

13.
Selenium (Se) is an essential element for most eukaryotic organisms, including humans. The balance between Se toxicity and its beneficial effects is very delicate. It has been demonstrated that a diet enriched with Se has cancer prevention potential in humans. The most popular commercial Se supplementation is selenized yeast, which is produced in a fermentation process using an inorganic source of Se. Here, we show that the uptake of Se, Se toxic effects and intracellular Se-metabolite profile are largely influenced by the level of sulphur source supplied during the fermentation. A Yap1-dependent oxidative stress response is active when yeast actively metabolizes Se, and this response is linked to the generation of intracellular redox imbalance. The redox imbalance derives from a disproportionate ratio between the reduced and oxidized forms of glutathione and also from the influence of Se metabolism on the central carbon metabolism. The observed increase in glycerol production rate, concomitant with the inhibition of ethanol formation in the presence of Se, can be ascribed to the occurrence of redox imbalance that triggers glycerol biosynthesis to replenish the pool of NAD(+) .  相似文献   

14.
For wildlife populations, it is often difficult to determine biological parameters that indicate breeding patterns and population mixing, but knowledge of these parameters is essential for effective management. A pedigree encodes the relationship between individuals and can provide insight into the dynamics of a population over its recent history. Here, we present a method for the reconstruction of pedigrees for wild populations of animals that live long enough to breed multiple times over their lifetime and that have complex or unknown generational structures. Reconstruction was based on microsatellite genotype data along with ancillary biological information: sex and observed body size class as an indicator of relative age of individuals within the population. Using body size‐class data to infer relative age has not been considered previously in wildlife genealogy and provides a marked improvement in accuracy of pedigree reconstruction. Body size‐class data are particularly useful for wild populations because it is much easier to collect noninvasively than absolute age data. This new pedigree reconstruction system, PR‐genie, performs reconstruction using maximum likelihood with optimization driven by the cross‐entropy method. We demonstrated pedigree reconstruction performance on simulated populations (comparing reconstructed pedigrees to known true pedigrees) over a wide range of population parameters and under assortative and intergenerational mating schema. Reconstruction accuracy increased with the presence of size‐class data and as the amount and quality of genetic data increased. We provide recommendations as to the amount and quality of data necessary to provide insight into detailed familial relationships in a wildlife population using this pedigree reconstruction technique.  相似文献   

15.
The etiology of selenium-vitamin E (Se-E) deficiency diseases may be complex. Many of the syndromes involve combined deficiency of selenium and vitamin E. Selenium moves into the animal and human food chain from soil and plants, which may contain inadequate amounts of the nutrient in many areas of the world. Vitamin E may be in low concentration in many animal feeds unless supplements are added. Some syndromes, such as steatitis in cats, result from an increased requirement of vitamin E in diets that contain large amounts of polyunsaturated fatty acids, and these diseases will only respond to vitamin E administration. Deficiency syndromes in animals owing to pure Se deficiency are infrequent and have been produced mainly by laboratory studies utilizing extreme deficiency conditions. Other factors that may affect the occurrence of these deficiency diseases are concurrent dietary deficiency of S-containing amino acids, bioavailability of different forms of dietary Se, intake of compounds that antagonize Se (e.g., silver salts), and exposure to various prooxidant substances (e.g., iron compounds, oxygen, ozone, and various drugs). A wide variety of pathologic alterations occur in animals and humans with Se-E deficiency. Myocardial lesions are seen most frequently in calves, lambs, pigs, turkey poults, and ducklings. In humans, Keshan disease, an endemic cardiomyopathy in China, is attributed to Se deficiency. Necrosis of skeletal muscle is the most frequent lesion observed in animal species. Necrosis of smooth muscle of the gizzard and intestine may be a prominent lesion in turkey poults, ducklings, and quail. Other Se-E deficiency lesions include hepatic necrosis, gastric ulceration, intestinal and uterine lipofuscinosis, pancreatic damage, steatitis, exudative diathesis, encephalomalacia, and testicular necrosis. Selenium toxicosis is well characterized in animals and humans by neurological, hoof, and hair alterations.  相似文献   

16.
移地与圈养大熊猫野外放归的探讨   总被引:5,自引:0,他引:5  
移地是指将生物有机体从一个区域自由释放到另一区域的移动,通常包括引入、重引入以及复壮等3 种类型。野生动物的移地有较悠久的历史。在许多国家,通过移地以维持濒危野生动物种群在野外的长期续存已成为保护生物学上的一种重要手段。影响圈养动物野外放归成功的因素主要来自物种生物学特性、自然环境、社会生物学以及放归方式等几方面,同时,放归亦给基础生态学研究带来了新的机遇与挑战。大熊猫是我国特有的珍稀兽类,分布在秦岭、岷山、邛崃山、大相岭、小相岭以及凉山等几大隔离的山系。由于部分山系栖息地的高度破碎以及隔离小种群普遍面临的来自种群及环境等随机因素的影响,单纯依靠就地保护的措施可能并不足以保证这些隔离小种群在野外长期续存。在圈养大熊猫种群数量不断增加的情况下,将圈养个体放归野外以复壮孤立小种群应是一种有效的保护手段,同时,随着大熊猫栖息地质量的逐步改善,圈养大熊猫野外放归的时机亦逐步成熟。文中尚就圈养大熊猫放归野外之前亟待解决的问题进行了讨论。  相似文献   

17.
Selenium (Se), which is a central component for the biosynthesis and functionality of selenoproteins, plays an important role in the anti-oxidative response, reproduction, thyroid hormone metabolism and the protection from infection and inflammation. However, dietary Se effects have not well been established to date and the available studies often present contradictory results. To obtain a better understanding of Se intake and its influence on the metabolism of living systems, we have utilized a metabolomics approach to gain insight into the specific metabolic alterations caused by Se deficiency in mice. Serum samples were collected from two groups of C57BL/6 mice: an experimental group which was fed a Se-deficient diet and controls consuming normal chow. The samples were analyzed by 1H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The resulting metabolite data were examined separately for both analytical methods and in a combined manner. By applying multivariate statistical analysis we were able to distinguish the two groups and detect a metabolite pattern associated with Se deficiency. We found that the concentrations of 15 metabolites significantly changed in serum samples collected from Se-deficient mice when compared to the controls. Many of the perturbed biological pathways pointed towards compensatory mechanisms during Se deficiency and were associated with amino acid metabolism. Our findings show that a metabolomics approach may be applied to identify the metabolic impact of Se and reveal the most impaired biological pathways as well as induced regulatory mechanisms during Se deficiency.  相似文献   

18.
Plant and Soil - Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers....  相似文献   

19.
Selenium (Se) is a naturally occurring trace element that is essential for animal and human nutrition, but the range between dietary requirements and toxic levels is relatively narrow. In this review, we are interested in the beneficial effects of selenium and we report on a number of studies of the selenium status of different populations in Saudi Arabia. The Status reflects the geographical area inhabited by the populations. Apart from the few available studies reviewed here, no data on the human status of Se in Saudi Arabia has been obtained. A further objective of this paper is throw some the light on the direction of future studies.  相似文献   

20.
《Small Ruminant Research》2008,76(2-3):185-191
General health, clinical-chemical blood analysis and copper (Cu), zinc (Zn), selenium (Se) and vitamin E concentrations in plasma and liver tissue (wet weight, ww) of two extensive grazing sheep flocks without mineral supply were compared to the status of local roe deer (Capreolus capreolus) populations (liver samples). Both sheep flocks were classified as healthy except for a remarkable variation in body weight and a slight foot rot infection in one flock. Hematology of sheep was normal, and total protein and creatinine as well as activities of creatin kinase, aspartat-amino-transferase, alkaline phosphatase and gamma-glutamyl-transferase in plasma were within reference levels. The mean of glutamate dehydrogenase (13.8 U/l) was slightly elevated in one flock. Mean liver concentrations of Zn (38.9 and 43.5 mg/kg ww) and Cu (111 and 87.5 mg/kg ww) in sheep flocks were higher compared to the respective roe deer populations (27.5 and 36.3 mg Zn/kg ww; 18.3 and 28.6 mg Cu/kg ww). This is supposed to be caused by differences in Cu and Zn metabolism in sheep and roe deer. Selenium deficiency was diagnosed in liver samples of both sheep flocks (0.21 and 0.23 mg/kg ww). There were neither significant differences compared to roe deer (0.21 and 0.27 mg Se/kg ww) nor differences depending on location. Correlations between plasma and liver concentrations of Cu, Zn and Se were not significant in sheep. Means of vitamin E in liver samples (30.6 and 41.8 mg/kg ww) were higher in roe deer populations. This may be caused by the opportunity of selective browsing for wild ruminants, which allows access to younger plants which are higher in vitamin E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号