共查询到20条相似文献,搜索用时 0 毫秒
1.
The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy and trauma has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Although calcium ions are considered key regulators of excitotoxicity, new evidence suggests that specific second messenger pathways rather than total Ca(2+) load, are responsible for mediating neuronal degeneration. Glutamate receptors are found localized at the synapse within electron dense structures known as the postsynaptic density (PSD). Localization at the PSD is mediated by binding of glutamate receptors to submembrane proteins such as actin and PDZ containing proteins. PDZ domains are conserved motifs that mediate protein-protein interactions and self-association. In addition to glutamate receptors PDZ-containing proteins bind a multitude of intracellular signal molecules including nitric oxide synthase. In this way PDZ proteins provide a mechanism for clustering glutamate receptors at the synapse together with their corresponding signal transduction proteins. PSD organization may thus facilitate the individual neurotoxic signal mechanisms downstream of receptors during glutamate overactivity. Evidence exists showing that inhibiting signals downstream of glutamate receptors, such as nitric oxide and PARP-1 can reduce excitotoxic insult. Furthermore we have shown that uncoupling the interaction between specific glutamate receptors from their PDZ proteins protects neurons against glutamate-mediated excitotoxicity. These findings have significant implications for the treatment of neurodegenerative diseases using therapeutics that specifically target intracellular protein-protein interactions. 相似文献
2.
3.
Though less potent than the parent natural product leinamycin, S-deoxyleinamycin displays activity against human cancer cell lines that is comparable to many clinically used agents. The results reported here suggest that the 1,2-dithiolan-3-one heterocycle found in S-deoxyleinamycin reacts with thiols to generate a persulfide intermediate (RSS(-)) that could deliver biologically active polysulfides, hydrogen sulfide, and reactive oxygen species (O2*-, H(2)O(2), and HO*) to the interior of cells. 相似文献
4.
The mu opioid receptor is a G-protein coupled receptor able to signal through the Gαi/o class of G-protein and β-arrestin pathways, stimulating down-stream effector pathways. Signaling bias occurs when different receptor agonists lead to different signaling outcomes. Traditionally these have been studied using end-point assays. Real-time cellular analysis platforms allow for the analysis of the holistic effects of receptor activation as an integrated output. While this allows for different ligands to be compared rapidly, the cellular mechanisms underlying the signal are not well described. Using an impedance based system, the impedance responses for two opioid ligands, morphine and DAMGO were examined.The impedance responses for these two agonists, while showing similar features, were distinct from each other. Some of the mechanisms underlying the mu opioid receptor coupled impedance changes were investigated. It was found that the response is a result of discrete cellular processes, including G-protein signaling and protein kinase phosphorylation. 相似文献
5.
Catarina Rendeiro Jeremy P. E. Spencer David Vauzour Laurie T. Butler Judi A. Ellis Claire M. Williams 《Genes & nutrition》2009,4(4):251-270
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition. 相似文献
6.
7.
8.
McDowell NG Beerling DJ Breshears DD Fisher RA Raffa KF Stitt M 《Trends in ecology & evolution》2011,26(10):523-532
Climate-driven vegetation mortality is occurring globally and is predicted to increase in the near future. The expected climate feedbacks of regional-scale mortality events have intensified the need to improve the simple mortality algorithms used for future predictions, but uncertainty regarding mortality processes precludes mechanistic modeling. By integrating new evidence from a wide range of fields, we conclude that hydraulic function and carbohydrate and defense metabolism have numerous potential failure points, and that these processes are strongly interdependent, both with each other and with destructive pathogen and insect populations. Crucially, most of these mechanisms and their interdependencies are likely to become amplified under a warmer, drier climate. Here, we outline the observations and experiments needed to test this interdependence and to improve simulations of this emergent global phenomenon. 相似文献
9.
Filloux A 《Biochimica et biophysica acta》2004,1694(1-3):163-179
The cell envelope of Gram-negative bacteria is composed of two membranes, which are separated by the peptidoglycan-containing periplasm. Whereas the envelope forms an essential barrier against harmful substances, it is nevertheless a compartment of intense traffic for large proteins such as enzymes and toxins. Numerous studies dealing with the molecular mechanism of protein secretion have revealed that Gram-negative bacteria evolved different strategies to achieve this process. Among them, the type II secretion mechanism is part of a two-step process. Exoproteins following this pathway are synthesized as signal peptide-containing precursors. After cleavage of the signal peptide, the mature exoproteins are released into the periplasm, where they fold. The type II machinery, also known as the secreton, is responsible for the translocation of the periplasmic intermediates across the OM. The type II system is broadly conserved in Gram-negative bacteria and involves a set of 12-16 different proteins named GspC-M, GspAB, GspN, GspO, and GspS. The type II secretion system is highly reminiscent of the type IV piliation assembly system. Based on findings about the subcellular localisation of the Gsp components, protein-protein interactions between Gsps and their multimerisation status, structural data and electron microscopy observation, it could be proposed a working model that strikingly runs both systems in parallel. 相似文献
10.
Roberts NW Porter ML Cronin TW 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1565):627-637
The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors. 相似文献
11.
12.
Katz PS 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1574):2086-2099
The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour. 相似文献
13.
14.
The Laboratory of Neurophysiology of Memory started its existence in 1954 by systematic research into spreading depression of EEG activity of laboratory rodents and by the use of this remarkable phenomenon as a functional ablation method in behavioral research. Its main contributions were in the study of memory formation and consolidation, interhemispheric transfer, motor learning, conditioned taste aversion and spatial orientation and navigation. In the last five years it concentrated on navigation of rats in multiple reference frames, on electrophysiological evidence for the role of hippocampal place cells support of behavior in such dissociated frames, on the analysis of idiothetic and allothetic forms of navigation and on the mathematical methods allowing assessment of the contribution of goal directed locomotion to place cell activity. The methods used in spatial memory research in rats were used for examination of human subjects in a laboratory equipped with a tracking system for humans in the hospital Homolka. Animal models of Alzheimer disease were studied in transgenic mice with the human gene for the beta amyloid precursor protein. 相似文献
15.
16.
E. É. Kolesnikova 《Neurophysiology》2004,36(4):293-309
In this review, modern concepts on molecular mechanisms underlying reception of the oxygen level in natural O2-sensory structures and cellular in vitro models are considered and discussed.Neirofiziologiya/Neurophysiology, Vol.36, No.4, pp.330–347, July–August, 2004. 相似文献
17.
Transcriptional mechanisms underlying lymphocyte tolerance 总被引:21,自引:0,他引:21
18.
Tea and health: the underlying mechanisms 总被引:12,自引:0,他引:12
Weisburger JH 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1999,220(4):271-275
Detailed multidisciplinary research on the effect of tea and the associated tea polyphenols has led to major advances on the underlying mechanisms. In most studies, green and black tea have similar effects, four of which are reviewed in this paper. 1) Tea polyphenols are powerful antioxidants that may play a role in lowering the oxidation of LDL-cholesterol, with a consequent decreased risk of heart disease, and also diminish the formation of oxidized metabolites of DNA, with an associated lower risk of specific types of cancer. 2) Tea and tea polyphenols selectively induce Phase I and Phase II metabolic enzymes that increase the formation and excretion of detoxified metabolites of carcinogens. 3) Tea lowers the rate of cell replication and thus the growth and development of neoplasms. 4) Tea modifies the intestinal microflora, reducing undesirable bacteria and increasing beneficial bacteria. The accumulated knowledge suggests that regular tea intake by humans might provide an approach to decrease the incidence of and mortality from major chronic diseases. 相似文献
19.
Philip H. -S. Jen 《生物学前沿》2010,5(2):128-155
For survival, bats of the suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes to
extract the direction, distance, velocity, size, and shape of the prey. Although these bats and other mammals share the common
layout of the auditory pathway and sound coding mechanism, they have highly developed auditory systems to process biologically
relevant pulses at the expense of a reduced visual system. During this active biosonar behavior, they progressively shorten
the pulse duration, decrease the amplitude and pulse-echo gap as they search, approach and finally intercept the prey. Presumably,
these changes in multiple pulse parameters throughout the entire course of hunting enable them to extract maximal information
about localized prey from the returning echoes. To hunt successfully, the auditory system of these bats must be less sensitive
to intense emitted pulses but highly sensitive to weak returning echoes. They also need to recognize and differentiate the
echoes of their emitted pulses from echoes of pulses emitted by other conspecifics. Past studies have shown the following
mechanical and neural adaptive mechanisms underlying the successful bat biosonar behavior: (1) Forward orienting and highly
mobile pinnae for effective scanning, signal reception, sound pressure transformation and mobile auditory sensitivity; (2)
Avoiding and detecting moving targets more successfully than stationary ones; (3) Coordinated activity of highly developed
laryngeal and middle ear muscles during pulse emission and reception; (4) Mechanical and neural attenuation of intense emitted
pulses to prepare for better reception of weak returning echoes; (5) Increasing pulse repetition rate to improve multiple-parametric
selectivity to echoes; (6) Dynamic variation of duration selectivity and recovery cycle of auditory neurons with hunting phase
for better echo analysis; (7) Maximal multiple-parametric selectivity to expected echoes returning within a time window after
pulse emission; (8) Pulse-echo delaysensitive neurons in higher auditory centers for echo ranging; (9) Corticofugal modulation
to improve on-going multiple-parametric signal processing and reorganize signal representation, and (10) A large area of the
superior colliculus, pontine nuclei and cerebellum that is sensitive to sound for sensori-motor integration. All these adaptive
mechanisms facilitate the bat to effectively extract prey features for successful hunting. 相似文献
20.
Neural mechanisms underlying amblyopia. 总被引:7,自引:0,他引:7
The nature of the neural basis of amblyopia is a matter of some debate. Recent neurophysiological data show correlates of amblyopia in the spatial properties of neurons in primary visual cortex. These neuronal deficits are probably the initial manifestation of the visual loss, but there are almost certainly additional deficits at higher levels of the visual pathways. 相似文献