首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Markers of GABA neurotransmission between chandelier neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons, are altered in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia. For example, immunoreactivity for the GABA membrane transporter (GAT1) is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABA(A) receptor α2 subunit is increased in postsynaptic AIS. These alterations are most marked in cortical layers 2-3. In addition, other determinants of the function of chandelier cell-pyramidal neuron synapses, such as ankyrin-G (which regulates the recruitment of sodium channels to the AIS), are also selectively altered in superficial layer pyramidal neurons in subjects with schizophrenia. Each of these components of chandelier cell-pyramidal neuron connectivity exhibits distinctive developmental trajectories in the primate DLPFC, suggesting that disturbances in these trajectories could contribute to the pathogenesis of schizophrenia. Recent findings that inputs from neocortical chandelier neurons are excitatory provide new ideas about the role of this circuitry in the pathophysiology of cortical dysfunction in schizophrenia.  相似文献   

2.
Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic) neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO) mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI); reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.  相似文献   

3.
4.
Fujisawa S  Buzsáki G 《Neuron》2011,72(1):153-165
Network oscillations support transient communication across brain structures. We show here, in rats, that task-related neuronal activity in the medial prefrontal cortex (PFC), the hippocampus, and the ventral tegmental area (VTA), regions critical for working memory, is coordinated by a 4 Hz oscillation. A prominent increase of power and coherence of the 4 Hz oscillation in the PFC and the VTA and its phase modulation of gamma power in both structures was present in the working memory part of the task. Subsets of both PFC and hippocampal neurons predicted the turn choices of the rat. The goal-predicting PFC pyramidal neurons were more strongly phase locked to both 4 Hz and hippocampal theta oscillations than nonpredicting cells. The 4 Hz and theta oscillations were phase coupled and jointly modulated both gamma waves and neuronal spikes in the PFC, the VTA, and the hippocampus. Thus, multiplexed timing mechanisms in the PFC-VTA-hippocampus axis may support processing of information, including working memory.  相似文献   

5.
In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same “fast-spiking” phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species.  相似文献   

6.
Cortical inhibitory neurons and schizophrenia   总被引:11,自引:0,他引:11  
Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.  相似文献   

7.
channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via ''s ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.  相似文献   

8.
《Developmental neurobiology》2017,77(12):1371-1384
Developmental changes that occur in the prefrontal cortex during adolescence alter behavior. These behavioral alterations likely stem from changes in prefrontal cortex neuronal activity, which may depend on the properties and expression of ion channels. Nav1.9 sodium channels conduct a Na+ current that is TTX resistant with a low threshold and noninactivating over time. The purpose of this study was to assess the presence of Nav1.9 channels in medial prefrontal cortex (mPFC) layer II and V pyramidal neurons in young (20‐day old), late adolescent (60‐day old), and adult (6‐ to 7‐month old) rats. First, we demonstrated that layer II and V mPFC pyramidal neurons in slices obtained from young rats exhibited a TTX‐resistant, low‐threshold, noninactivating, and voltage‐dependent Na+ current. The mRNA expression of the SCN11a gene (which encodes the Nav1.9 channel) in mPFC tissue was significantly higher in young rats than in late adolescent and adult rats. Nav1.9 protein was immunofluorescently labeled in mPFC cells in slices and analyzed via confocal microscopy. Nav1.9 immunolabeling was present in layer II and V mPFC pyramidal neurons and was more prominent in the neurons of young rats than in the neurons of late adolescent and adult rats. We conclude that Nav1.9 channels are expressed in layer II and V mPFC pyramidal neurons and that Nav1.9 protein expression in the mPFC pyramidal neurons of late adolescent and adult rats is lower than that in the neurons of young rats. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1371–1384, 2017  相似文献   

9.
Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.  相似文献   

10.
Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.  相似文献   

11.
Gamma oscillations are a prominent phenomenon related to a number of brain functions. Data show that individual pyramidal neurons can fire at rate below gamma with the population showing clear gamma oscillations and synchrony. In one kind of idealized model of such weak gamma, pyramidal neurons fire in clusters. Here we provide a theory for clustered gamma PING rhythms with strong inhibition and weaker excitation. Our simulations of biophysical models show that the adaptation of pyramidal neurons coupled with their low firing rate leads to cluster formation. A partially analytic study of a canonical model shows that the phase response curves with a near zero flat region, caused by the presence of the slow adaptive current, are the key to the formation of clusters. Furthermore we examine shunting inhibition and show that clusters become robust and generic  相似文献   

12.
A. Erb  N. Franck 《PSN》2009,7(1):23-30
Many abnormalities have recently been identified in the brains of patients suffering from schizophrenia. Whereas macroscopic changes have been well described, what is occuring at a genetic or molecular level is far less clear. In this review, we analyse the changes that occur in the frontal temporal and parietal cortices, as well as in limbic structures, basal ganglia and the cerebellum. The main observations are the followings: the dorsolateral prefrontal cortex has been especially studied. Pyramidal cells are smaller in deep layer III, which corresponds to a decrease in the dendritic arborisation of these cells, suggesting a loss of connectivity in schizophrenia. This may be due to an excess of synaptic pruning during adolescence, which is when the first symptoms of schizophrenia emerge. Excessive synaptic apoptosis might be one of the mechanisms involved. Reductions of the cortical neuropile have been described in many studies, suggesting a diminution of dendritic spines and/or axons. Diminished connectivity could explain the abnormal gyrification observed in many studies. Nevertheless, it is not yet clear whether the decreased somal size is due to a reduction of the afferent signal (which exerts a trophic effect on the dendritic arborisation of a neuron) or to a loss of trophic effect from the glial cells. The reduction in the total number of neurons in the mediodorsal nucleus of the thalamus has not been replicated and does not seem to be involved in the prefrontal cortex alterations. Abnormalities are also described in inhibitory interneurons, which may be caused by a subpopulation of neurons called “chandelier” cells. These neurons are involved in the regulation of pyramidal cell output, thus allowing the synchronisation of excitatory influx. These abnormalities could explain in part the cognitive deficits observed in patients with schizophrenia, such as alterations to working memory. As a correlate of these observations, genetic studies point to alterations in the glutamatergic and gabaergic systems, but do not enable us to understand which alteration precedes the other. Agonists of the glycine B site, which is a modulator of the NMDA receptor of the glutamate, could be an interesting target for new treatments, in addition to selective benzodiazepines for the GABAa receptor, which could improve cognitive function. Whereas the neurodegenerative hypothesis of schizophrenia has been in part refuted by the lack of observable gliosis, abnormalities are also described in glial cells, which have a trophic role as regards neurons. Their number or density is reduced in the prefrontal cortex and several genes are involved in the schizophrenia code for myelination proteins. Many of these alterations are also described in other cortical zones, such as the temporal lobe, especially the hippocampus. The parietal lobe, while strongly suspected, seems to be less studied at these cellular and molecular levels. Basal ganglia, especially the thalamus, have also been studied. The thalamus seems to be smaller and contain less neurons but these results still need to be replicated. White matter study benefits from the development of new technology such as diffusion tensor imaging (DTI), which points to alterations in neuronal connectivity in this disease. Interstitial neurons of the white matter, which could be remnants of the neural sub-plate, from which the cortex develops, are not normally distributed. Finally, the cerebellum is of great interest since it has been implicated in cognitive dysfunctions. Thus cognitive dysmetria could be one of the pathophysiological mechanisms involved in schizophrenia. But results are few and contradictory at a cytoarchitectural level. In conclusion, many studies are being conducted to explore this fascinating area. The aim is a better comprehension of the mechanisms underlying both positive and negative symptoms and schizophrenic disorganization, as well as the development of new targets for treating this disabling disease.  相似文献   

13.
Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here, we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied.  相似文献   

14.
Using polyclonal antibody against dopamine D4 receptor we investigated cortical distribution of D4 receptors, with the special emphasis on regions of the prefrontal cortex. Prefrontal cortex is regarded as a target for neuroleptic drugs, and engaged in the regulation of the psychotic effects of various substances used in the experimental modeling of schizophrenia. Western blot analysis performed on samples from the rat cingulate, parietal, piriform cortices and also striatum revealed that antibody recognized one main band of approximately 40 kD, which corresponds to the predicted molecular weight of D4 receptor protein. In immunocytochemical studies we found D4 receptor-positive neurons in all regions of prefrontal cortex (cingulate, agranular/insular and orbital cortices) and all cortical regions adjacent to prefrontal cortex, such as frontal, parietal and piriform cortex. Substantial number of D4 receptor-positive neurons has also been observed within the striatum and nucleus accumbens. In general, a clear stratification of the D4 receptor-positive neurons was observed in the cortex with the highest density seen in layers II/III and V/VI. D4 immunopositive material was also found in the dendritic processes, particularly clearly visible in the layer II/III. At the cellular level D4 receptor immunoreactivity was seen predominantly on the periphery of the cell body, but a certain population of neurons with clear cytoplasmatic localization was also identified. In addition to cortical distribution of D4 receptor-positive neurons we tried also to define types of neurons expressing D4 receptor protein. In double-labeling experiments, D4 receptor protein was found in nonphosphorylated neurofilament H-positive, calbindin-D28k-positive, as well as parvalbumin-positive cells. Since, used proteins are markers of certain populations of pyramidal neurons and GABA-ergic interneurons, respectively, our data indicate that D4 receptors are located on cortical pyramidal output neurons and their dendritic processes as well as on interneurons. Above localization indicates that D4 receptors are not only directly influencing excitability of cortical inter- and output neurons but also might be engaged in dendritic spatial and temporal integration, required for the generation of axonal messages. Additionally, our data show that D4 receptors are widely distributed throughout the cortex of rat brain, and that their cortical localization exceeds the localization of dopaminergic terminals.  相似文献   

15.
In the cerebral cortex, GABAergic interneurons are often regarded as fast-spiking cells. We have identified a type of slow-spiking interneuron that offers distinct contributions to network activity. "Ivy" cells, named after their dense and fine axons innervating mostly basal and oblique pyramidal cell dendrites, are more numerous than the parvalbumin-expressing basket, bistratified, or axo-axonic cells. Ivy cells express nitric oxide synthase, neuropeptide Y, and high levels of GABA(A) receptor alpha1 subunit; they discharge at a low frequency with wide spikes in vivo, yet are distinctively phase-locked to behaviorally relevant network rhythms including theta, gamma, and ripple oscillations. Paired recordings in vitro showed that Ivy cells receive depressing EPSPs from pyramidal cells, which in turn receive slowly rising and decaying inhibitory input from Ivy cells. In contrast to fast-spiking interneurons operating with millisecond precision, the highly abundant Ivy cells express presynaptically acting neuromodulators and regulate the excitability of pyramidal cell dendrites through slowly rising and decaying GABAergic inputs.  相似文献   

16.
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.  相似文献   

17.
Interneurons of motor area in the brain cortex have been studied in cats and monkeys. The greatest attention has been paid to pyramidal interneurons, among which six cell types have been described according to their axonal composition. Unlike stellate interneurons, all types of pyramidal interneurons possess less developed axonal collaterals. Interneuronal contacts are situated on dendrites or cell bodies of middle and large long-axonal pyramids. Functional role of cortical interneurons seems to be different. Some of them are of inhibitory nature (basket cells and, perhaps, other types of long-axonal stellate neurons), others are exciting elements. The latter include short-axonal stellate neurons and, perhaps, pyramidal interneurons. While comparing the cortex in cats and monkeys, it is evident that the neocortex in monkeys, especially its lower layers, is rich in pyramidal interneurons.  相似文献   

18.
The cortical formations of the brain involved in visual functions (the occipital and temporo-parieto- occipital areas, the oculomotor area of the prefrontal cortex), as well as the motor cortex in the representation zone of the arm and the medial region of the frontal cortex adjacent to the limbic lobe, were studied in post-mortem material. The thickness of the cortex and cortical layer III, the sizes of pyramidal neurons, the specific volumes of neurons and intracortical vessels were studied in subjects of both sexes, from birth to the age of 20 years, at yearly intervals (103 observations) using histological techniques, computer morphometric and stereological analysis. The thickness of the cortex of the cerebral hemispheres was observed to intensively increase from birth to the age of 3 years in the occipital, temporo-parieto-occipital and prefrontal cortical areas involved in visual recognition processes. The increase in thickness of the cerebral cortex continues until the age of 6 in the occipital cortex and in the oculomotor area, until the age of 7 years in the temporo-parietooccipital area and the medial prefrontal area, and until the age of 8–9 years in the motor cortex. The sizes of pyramidal neurons increase until the age of 6 years in the motor cortex, until the age of 8 years on the medial surface of the frontal lobe, and until the age of 9–10 years in the temporo-parieto-occipital area and in the dorsolateral area of the prefrontal cortex. The specific volume of neurons and blood vessels in the cortex of the cerebral hemispheres decreases and the volume of intracortical fibers increases throughout the ascending ontogeny, which is manifested most intensively in the prefrontal cortex.  相似文献   

19.
By means of the silver nitrate impregnation method after Golgi-Kopsch in kittens and young cats the field 4 in the cerebral motor cortex has been studied. The motor cortex of the field 4 possesses certain heteromorphism. Besides usual stellate and pyramidal neurons, that differ from real ones by some morphological signs: their body is often round, the apical dendrite is much thinner than the corresponding dendrite of a pyramidal neuron, it does not produce oblique branches along the course, never gets into the I layer, the spines arrange less densely. According to the mode of dendrites setting off, the atypical pyramidal neurons can be divided into multipolar and spindle-like with horizontal or vertical branching of the dendrites. According to the spines distribution, the multipolar atypical neurons can be divided into spinous, rare-spinous and aspinous. With respect to various cellular forms and distribution of various types of neurons in layers, every of the areas (gamma, alpha, sfu, fu) possesses specific peculiarities. The greatest variability of the neurons have the field 4 gamma and 4 alpha, where, besides stellate and pyramidal, atypical neurons can be found. The stellate neurons of the field 4 gamma are characterized with a deep arrangement, their number is essentially less, than in other areas of the field 4. In the field 4 alpha they are situated in the layers II-III. Suprafundal and fundal parts of the field do not possess pyramidal atypical neurons and are characterized with presence of large amount of the stellate neurons. In respect to the axonal branching in the suprafundal part of the field 4, 2 types of the stellate cells are distinguished.  相似文献   

20.
There is substantial evidence implicating N-methyl-D-aspartate receptors (NMDARs) in memory and cognition. It has also been suggested that NMDAR hypofunction might underlie the cognitive deficits observed in schizophrenia as morphological changes, including alterations in the dendritic architecture of pyramidal neurons in the prefrontal cortex (PFC), have been reported in the schizophrenic brain post mortem. Here, we used a genetic model of NMDAR hypofunction, a serine racemase knockout (SR-/-) mouse in which the first coding exon of the mouse SR gene has been deleted, to explore the role of D-serine in regulating cognitive functions as well as dendritic architecture. SR-/- mice exhibited a significantly disrupted representation of the order of events in distinct experiences as showed by object recognition and odor sequence tests; however, SR-/- animals were unimpaired in the detection of novel objects and in spatial displacement, and showed intact relational memory in a test of transitive inference. In addition, SR-/- mice exhibited normal sociability and preference for social novelty. Neurons in the medial PFC of SR-/- mice displayed reductions in the complexity, total length and spine density of apical dendrites. These findings show that D-serine is important for specific aspects of cognition, as well as in regulating dendritic morphology of pyramidal neurons in the medial PFC (mPFC). Moreover, they suggest that NMDAR hypofunction might, in part, be responsible for the cognitive deficits and synaptic changes associated with schizophrenia, and highlight this signaling pathway as a potential target for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号