首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite extensive structural and kinetic studies, the mechanism by which the Escherichia coli chaperonin GroEL assists protein folding has remained somewhat elusive. It appears that GroEL might play an active role in facilitating folding, in addition to its role in restricting protein aggregation by secluding folding intermediates. We have investigated the kinetic mechanism of GroEL-mediated refolding of the small protein barstar. GroEL accelerates the observed fast (millisecond) refolding rate, but it does not affect the slow refolding kinetics. A thermodynamic coupling mechanism, in which the concentration of exchange-competent states is increased by the law of mass action, can explain the enhancement of the fast refolding rates. It is not necessary to invoke a catalytic role for GroEL, whereby either the intrinsic refolding rate of a productive folding transition or the unfolding rate of a kinetically trapped off-pathway intermediate is increased by the chaperonin.  相似文献   

2.
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.  相似文献   

3.
Escherichia coli molecular chaperone GroEL and co-chaperone GroES are well known to assist the folding/refolding of a diverse range of substrate proteins. Despite this, there have been relatively few reports of the GroEL/GroES molecular chaperone system being used as a biotechnology tool for protein folding/refolding. In this paper, a solution-phase protein folding bioreactor is described that involves the complete GroEL/GroES system. The main features of this bioreactor are the use of a stirred-cell concentrator fitted with a 100 kDa molecular weight cutoff membrane and an attached buffer reservoir. This bioreactor system was used successfully for assisted-batch refolding of guanidinium chloride (Gu-HCl) unfolded mitochondrial malate dehydrogenase (mMDH). We believe that protein folding bioreactor systems of this type could have wide potential utility for the folding/refolding of unfolded protein substrates.  相似文献   

4.
The Escherichia coli GroEL subunit consists of three domains with distinct functional roles. To understand the role of each of the three domains, the effects of mutating a single residue in each domain (Y203C at the apical, T89W at the equatorial, and C138W at the intermediate domain) were studied in detail, using three different enzymes (enolase, lactate dehydrogenase, and rhodanese) as refolding substrates. By analyzing the effects of each mutation, a transfer of signals was detected between the apical domain and the equatorial domain. A signal initiated by the equatorial domain triggers the release of polypeptide from the apical domain. This trigger was independent of nucleotide hydrolysis, as demonstrated using an ATPase-deficient mutant, and, also, the conditions for successful release of polypeptide could be modified by a mutation in the apical domain, suggesting that the polypeptide release mechanism of GroEL is governed by chaperonin-target affinities. Interestingly, a reciprocal signal from the apical domain was suggested to occur, which triggered nucleotide hydrolysis in the equatorial domain. This signal was disrupted by a mutation in the intermediate domain to create a novel ternary complex in which GroES and refolding protein are simultaneously bound in a stable ternary complex devoid of ATPase activity. These results point to a multitude of signals which govern the overall chaperonin mechanism.  相似文献   

5.
GroEL C138W is a mutant form of Escherichia coli GroEL, which forms an arrested ternary complex composed of GroEL, the co-chaperonin GroES and the refolding protein molecule rhodanese at 25 degrees C. This state of arrest could be reversed with a simple increase in temperature. In this study, we found that GroEL C138W formed both stable trans- and cis-ternary complexes with a number of refolding proteins in addition to bovine rhodanese. These complexes could be reactivated by a temperature shift to obtain active refolded protein. The simultaneous binding of GroES and substrate to the cis ring suggested that an efficient transfer of substrate protein into the GroEL central cavity was assured by the binding of GroES prior to complete substrate release from the apical domain. Stopped-flow fluorescence spectroscopy of the mutant chaperonin revealed a temperature-dependent conformational change in GroEL C138W that acts as a trigger for complete protein release. The behavior of GroEL C138W was reflected closely in its in vivo characteristics, demonstrating the importance of this conformational change to the overall activity of GroEL.  相似文献   

6.
我们自E.coli细胞中纯化出GroEL和GroES,对其有活性的分子状态和反应条件进行了探索,结果表明,只有在等摩尔的GroEL和GroES以及1mmol/LATP和适当浓度的K+存在时;才会有较高的催化折叠效率,它可使lmg/ml的IL-2的正确折叠率由30%提高到58%,使IL-2和GM-CSF的比活性提高1倍以上。它提高重组蛋白质正确拆叠率的关键是可以降低折叠过程中形成聚合体。  相似文献   

7.
One of the most interesting facets of GroEL-facilitated protein folding lies in the fact that the requirement for a successful folding reaction of a given protein target depends upon the refolding conditions used. In this report, we utilize a mutant of GroEL (GroEL T89W) whose domain movements have been drastically restricted, producing a chaperonin that is incapable of utilizing the conventional cyclic mechanism of chaperonin action. This mutant was, however, still capable of improving the refolding yield of lactate dehydrogenase in the absence of both GroES and ATP hydrolysis. A very rapid interconversion of conformations was detected in the mutant immediately after ATP binding, and this interconversion was inferred to form part of the target release mechanism in this mutant. The possibility exists that some target proteins, although dependent on GroEL for improved refolding yields, are capable of refolding successfully by utilizing only portions of the entire mechanism provided by the chaperonins.  相似文献   

8.
Molecular chaperones are involved in protein folding both in vivo and in vitro. The Escherichia coli chaperone GroEL interacts with a number of nonnative proteins. A common structural motif of nonnative proteins, which is recognized by GroEL, has not yet been identified. In order to study the role of beta-sheet secondary structure on the interaction of nonnative proteins with GroEL, we used the F(ab) fragment of a monoclonal antibody as a model substrate protein. Here we show that GroEL interacts functionally with this all-beta-protein during reactivation. Antibody fragments refold spontaneously in good yield from the guanidine-denatured state. Functional refolding to the native state is inhibited transiently by GroEL, but there is no complete folding arrest in the absence of Mg-ATP and GroES. The yield of these unspecifically released GroEL-bound F(ab) fragments corresponds to that of the spontaneous reactivation in the absence of chaperones. However, the refolding kinetics in the presence of GroEL are considerably slower. The addition of Mg-ATP to the GroEL.F(ab) complex results in an immediate release of bound substrate protein and a significant increase in the amount of reconstituted antibody fragments compared to spontaneous reactivation. GroES is not essential for functional GroEL-mediated refolding of the F(ab) fragment but affects the reactivation yield to a small extent. Interestingly, stimulation of the GroEL-mediated F(ab) refolding depends primarily on the binding and not on hydrolysis of adenosine triphosphates. Previous results indicate the binding of alpha-helices to GroEL. The results presented in this paper suggest that beta-sheet secondary structural elements are recognized by GroEL. We therefore conclude that the interaction of a nonnative protein with GroEL depends mainly on the nature of the early folding intermediate but not on a specific element of secondary structure.  相似文献   

9.
When Bacillus stearothermophilus LDH dimer is incubated with increasing concentrations of the denaturant guanidinium chloride, three distinct unfolded states of the molecule are observed at equilibrium [Smith, C. J., et al. (1991) Biochemistry 30, 1028-1036]. The kinetics of LDH refolding are consistent with an unbranched progression through these states. The Escherichia coli chaperonin, GroEL, binds with high affinity to the completely denatured form and more weakly to the earliest folding intermediate, thus retarding the refolding process. A later structurally defined folding intermediate, corresponding to a molten globule form, is not bound by GroEL; neither is the inactive monomer. The complex between GroEL and denatured LDH is destabilized by the binding of magnesium/ATP (Mg/ATP) or by the nonhydrolyzable analogue adenylyl imidodiphosphate (AMP-PNP). From our initial kinetic data, we propose that GroEL exists in two interconvertible forms, one of which is stabilized by the binding of Mg/ATP but associates weakly with the unfolded protein. The other is destabilized by Mg/ATP and associates strongly with unfolded LDH. The relevance of these findings to the role of GroEL in vivo is discussed.  相似文献   

10.
The modulation of the folding mechanism of the small protein single-chain monellin (MNEI) by the Escherichia coli chaperone GroEL has been studied. In the absence of the chaperone, the folding of monellin occurs via three parallel routes. When folding is initiated in the presence of a saturating concentration of GroEL, only 50-60% of monellin molecules fold completely. The remaining 40-50% of the monellin molecules remain bound to the GroEL and are released only upon addition of ATP. It is shown that the basic folding mechanism of monellin is not altered by the presence of GroEL, but that it occurs via only one of the three available routes when folding is initiated in the presence of saturating concentrations of GroEL. Two pathways become nonoperational because GroEL binds very tightly to early intermediates that populate these pathways in a manner that makes the GroEL-bound intermediates incompetent to fold. This accounts for the monellin molecules that remain GroEL-bound at the end of the folding reaction. The third pathway remains operational because the GroEL-bound early intermediate on this pathway is folding-competent, suggesting that this early intermediate binds to GroEL in a manner that is different from that of the binding of the early intermediates on the other two pathways. It appears, therefore, that the same protein can bind GroEL in more than one way. The modulation of the folding energy landscape of monellin by GroEL occurs because GroEL binds folding intermediates on parallel folding pathways, in different ways, and with different affinities. Moreover, when GroEL is added to refolding monellin at different times after commencement of refolding, the unfolding of two late kinetic intermediates on two of the three folding pathways can be observed. It appears that the unfolding of late folding intermediates is enabled by a thermodynamic coupling mechanism, wherein GroEL binds more tightly to an early intermediate than to a late intermediate on a folding pathway, with preferential binding energy being larger than the stability of the late intermediate. Hence, it is shown that GroEL can inadvertently and passively cause, through its ability to bind different folding intermediates differentially, the unfolding of late productive intermediates on folding pathways, and that its unfolding action is not restricted solely to misfolded or kinetically trapped intermediates.  相似文献   

11.
The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.  相似文献   

12.
S J Landry  L M Gierasch 《Biochemistry》1991,30(30):7359-7362
Chaperones facilitate folding and assembly of nascent polypeptides in vivo and prevent aggregation in refolding assays in vitro. A given chaperone acts on a number of different proteins. Thus, chaperones must recognize features present in incompletely folded polypeptide chains and not strictly dependent on primary structural information. We have used transferred nuclear Overhauser effects to demonstrate that the Escherichia coli chaperonin GroEL binds to a peptide corresponding to the N-terminal alpha-helix in rhodanese, a mitochondrial protein whose in vitro refolding is facilitated by addition of GroEL, GroES, and ATP. Furthermore, the peptide, which is unstructured when free in aqueous solution, adopts an alpha-helical conformation upon binding to GroEL. Modification of the peptide to reduce its intrinsic propensity to take up alpha-helical structure lowered its affinity for GroEL, but, nonetheless, it could be bound and took up a helical conformation when bound. We propose that GroEL interacts with sequences in an incompletely folded chain that have the potential to adopt an amphipathic alpha-helix and that the chaperonin binding site promotes formation of a helix.  相似文献   

13.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

14.
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring.  相似文献   

15.
Chaperonin GroEL assists protein folding in the presence of ATP and magnesium. Recent studies have shown that several divalent cations other than magnesium induce conformational changes of GroEL, thereby influencing chaperonin-assisted protein folding, but little is known about the detailed mechanism for such actions. Thus, the effects of divalent cations on protein encapsulation by GroEL/ES complexes were investigated. Of the divalent cations, not only magnesium, but also manganese ions enabled the functional refolding and release of 5,10-methylenetetrahydroforate reductase (METF) by GroEL. Neither ATP hydrolysis nor METF refolding was observed in the presence of zinc ion, whereas only ATP hydrolysis was induced by cobalt and nickel ions. SDS-PAGE and gel filtration analyses revealed that cobalt, nickel and zinc ions permit the formation of stable substrate-GroEL-GroES cis-ternary complexes, but prevent the release of METF from GroEL.  相似文献   

16.
Simultaneous presence of two chaperones, GroEL and protein disulfide isomerase (PDI), assists the reactivation of denatured D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in an additive way. Delayed addition of chaperones to the refolding solution after dilution of denatured GAPDH indicates an interaction with intermediates formed mainly in the first 5 min for PDI and formed within a longer time period for GroEL-ATP. The above indicate that the two chaperones interact with different folding intermediates of GAPDH. After delayed addition of one chaperone to the refolding mixture containing the other at 4°C, GroEL binds with all GAPDH intermediates dissociated from PDI, and PDI interacts with the intermediates released from GroEL during the first 10–20 min. It is suggested that the GAPDH folding intermediates released from the chaperone-bound complex are still partially folded so as to be rebound by the other chaperone. The above results clearly support the network model of GroEL and PDI.  相似文献   

17.
Previous investigation has shown that at 22 degrees C and in the presence of the chaperonin GroEL, the slowest step in the refolding of Escherichia coli dihydrofolate reductase (EcDHFR) reflects release of a late folding intermediate from the cavity of GroEL (Clark AC, Frieden C, 1997, J Mol Biol 268:512-525). In this paper, we investigate the effects of potassium, magnesium, and MgADP on the release of the EcDHFR late folding intermediate from GroEL. The data demonstrate that GroEL consists of at least two conformational states, with apparent rate constants for EcDHFR release that differ by four- to fivefold. In the absence of potassium, magnesium, and ADP, approximately 80-90% of GroEL resides in the form with the faster rate of release. Magnesium and potassium both shift the distribution of GroEL forms toward the form with the slower release rate, though cooperativity for the magnesium-induced transition is observed only in the presence of potassium. MgADP at low concentrations (0-50 microM) shifts the distribution of GroEL forms toward the form with the faster release rate, and this effect is also potassium dependent. Nearly identical results were obtained with a GroEL mutant that forms only a single ring, demonstrating that these effects occur within a single toroid of GroEL. In the presence of saturating magnesium, potassium, and MgADP, the apparent rate constant for the release of EcDHFR from wild-type GroEL at 22 degrees C reaches a limiting value of 0.014 s(-1). For the single ring mutant of GroEL, the rate of EcDHFR release under the same conditions reaches a limiting value of 0.024 s(-1), suggesting that inter-ring negative cooperativity exists for MgADP-induced substrate release. The data suggest that MgADP preferentially binds to one conformation of GroEL, that with the faster apparent rate constant for EcDHFR release, and induces a conformational change leading to more rapid release of substrate protein.  相似文献   

18.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

19.
Tyagi NK  Fenton WA  Deniz AA  Horwich AL 《FEBS letters》2011,585(12):1969-1972
Under "permissive" conditions at 25°C, the chaperonin substrate protein DM-MBP refolds 5-10 times more rapidly in the GroEL/GroES folding chamber than in free solution. This has been suggested to indicate that the chaperonin accelerates polypeptide folding by entropic effects of close confinement. Here, using native-purified DM-MBP, we show that the different rates of refolding are due to reversible aggregation of DM-MBP while folding free in solution, slowing its kinetics of renaturation: the protein exhibited concentration-dependent refolding in solution, with aggregation directly observed by dynamic light scattering. When refolded in chloride-free buffer, however, dynamic light scattering was eliminated, refolding became concentration-independent, and the rate of refolding became the same as that in GroEL/GroES. The GroEL/GroES chamber thus appears to function passively toward DM-MBP.  相似文献   

20.
Human muscle creatine kinase (CK) is an enzyme that plays an important physiological role in the energy metabolism of humans. It also serves as a typical model for studying refolding of proteins. A study of the refolding and reactivation process of guanidine chloride-denatured human muscle CK is described in the present article. The results show that the refolding process can be divided into fast and slow folding phases and that an aggregation process competes with the proper refolding process at high enzyme concentration and high temperature. An intermediate in the early stage of refolding was captured by specific protein molecules: the molecular chaperonin GroEL and alpha(s)-casein. This intermediate was found to be a monomer, which resembles the "molten globule" state in the CK folding pathway. To our knowledge, this is the first monomeric intermediate captured during refolding of CK. We propose that aggregation is caused by interaction between such monomeric intermediates. Binding of GroEL with this intermediate prevents formation of aggregates by decreasing the concentration of free monomeric intermediates, whereas binding of alpha(s)-casein with this intermediate induces more aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号