首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sulfated mucopolysaccharide composition of normal and virus transformed Balb 3T3 and BHK21 cell lines is reported. It is shown that normal 3T3 cells contain mainly chondroitin sulfate B and heparitin sulfate. Relatively higher amounts of chondroitin sulface AC were observed in polyoma virus transformed 3T3 cells, besides an absolute increase of all the three sulfated mucopolysaccharides in the polyoma and SV 40 transformed cells. It is shown also that the three sulfated mucopolysaccharides are at least in part at the cell surface. Similar differences in sulfated mucopolysaccharide composition of normal and virus transformed BHK cell lines were also observed.  相似文献   

2.
The sulfated mucopolysaccharide composition of the mammalian cell lines: HeLa, H.Ep.2, AV3, WI-38, BHK and a cell culture of rabbit lung tissue is reported. It is shown that chondroitin sulfate AC and heparitin sulfate are the main mucopolysaccharides of the permanent cell lines whereas chondroitin sulfate B and heparitin sulfate are the major ones in the primary cultures, with no significant change in their relative concentrations up to seven generations. It is also shown that besides heparitin sulfate, chondroitin sulfate AC and chondroitin sulfate B are located at the surface of the cells. These results are in agreement with the earlier proposals that heparitin sulfate and chondroitin sulfate B might play a role in cell recognition and adhesiveness and that chondroitin sulfate AC might act as a stimulant of cell division.  相似文献   

3.
The sulfated mucopolysaccharide composition of different neonate, adult and tumoral tissues is reported. It is shown that each tissue has a characteristic composition with respect to the relative amount, type and molecular size of chondroitin sulfate AC, chondroitin sulfate B and heparitin sulfate. Neonate and tumor tissues contain large amounts of chondrotin sulfate AC which is nearly absent in most adult and normal tissues respectively. Based on these and other results a possible role for the sulfated mucopolysaccharides in cell recognition and adhesiveness is proposed.  相似文献   

4.
Distribution of sulfated mucopolysaccharides in invertebrates.   总被引:13,自引:0,他引:13  
The sulfated mucopolysaccharide composition of 22 species of invertebrates belonging to the phyla Arthropoda, Mollusca, Annelida, Tunicata, Echinodermata, Coelenterata, and Porifera was analyzed. It is shown that all the species contain variable amounts of one or more types of sulfated mocopolysaccharides, most of which similar to the ones found in vertebrates. It is shown also that each species has a characteristic composition, differing from each other regarding the relative amount and type of chondroitin sulfates A, B, and C, heparitin sulfate, and heparin. The possible biological role of the sulfated mucopolysaccharides in cell recognition or aggregation or both is discussed in view of the present findings.  相似文献   

5.
The synthesis of sulfated glycosaminoglycans was analysed in mouse fibroblasts during the transition from exponential growth to quiescent monolayers. 'Normal' Swiss 3T3 fibroblasts were compared with SV40 transformed 3T3, C6, ST1 and HeLa cells. p-Nitrophenyl-beta-D-xyloside, an artificial acceptor for glycosaminoglycans synthesis, was used as a probe. Exponentially growing 'normal' 3T3 cells synthesized both dermatan sulfate and chondroitin 4-sulfate, retaining the latter and releasing the former to the medium. Upon reaching quiescence these cells switched to retention of dermatan sulfate and release of chondroitin 4-sulfate. SV3T3 cells synthesized several fold less sulfated glycosaminoglycans than 'normal' 3T3. Even though SV3T3 cells are able to synthesize dermatan sulfate, they only retained chondroitin 4-sulfate, never switching to retention of dermatan sulfate. These results indicated that the transition from rapidly proliferating to resting G0 state in normal cells is accompanied by a switch from chondroitin-sulfate rich to dermatan-sulfate-rich cells. This switching was not observed with transformed cells, which are unable to enter the G0 state. Phenylxyloside caused a several fold increase in glycosaminoglycans released to the medium in both cell types, but it did not interfere with either growth rate or cell morphology. Particularly the phenylxyloside treatment led to an increase of more than 10-fold in production of dermatan and chondroitin sulfate by SV3T3, C6, ST1 and HeLa cells. This demonstrated that transformed cells have a high capacity for glycosaminoglycan synthesis. Analysis of enzymatic degradation products of glycosaminoglycans, synthesized in the presence of phenylxyloside, by normal and transformed cells, led to the finding of 4- and 6-sulfated iduronic and glucuronic acid-containing disaccharides. This result indicated that the xyloside causes the synthesis of a peculiar chondroitin sulfate/dermatan sulfate, in both normal and transformed cells.  相似文献   

6.
The sulfated glycosaminoglycan content of primary cultures of fibroblasts from guinea-pig embryo kidney is reported. A hybrid chondroitin sulfate comprises approx. 90% of these glycosaminoglycans from the cell coat. Changes in the proportion of labelled heparitin sulfate were also observed after successive subcultures. We postulate a possible correlation between the pattern of glycosaminoglycans and processes of cell selection and cell dedifferentiation in these cultures.  相似文献   

7.
The distribution of sulfated mucopolysaccharides in different tissues during growth and in cancer tissues is reported. It is shown that most of the tissues of 1 day-old rats and rabbits contain chondroitin sulfate A/C, chondroitin sulfate B and heparan sulfate in about the same proportions, whereas in adult animals chondroitin sulfate A/C decreases in concentration or disappears. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tissues. In rats, these changes occur in the first 25 days of extrauterine development. A great increase of chondroitin sulfate A/C was observed in human tumors of different origins when compared with the normal adjacent tissues. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tumors analysed. The possible role of chondroitin sulfate A/C in cell division is discussed in view of the present findings.  相似文献   

8.
The changes of sulfated mucopolysaccharides and mucopolysaccharidases during bovine fetal development were analyzed. It is shown that chondroitin sulfate C increases in concentration up to the 50th day of fetal development and then decreases progressively until its complete disappearance in most adult tissues. Likewise, hyaluronidase also reaches a peak on the 50th day and decreases in activity until its disappearance in adult tissues. On the other hand, heparitin sulfate and chondroitin sulfate B as well as beta-glucuronidase and beta-N-acetylglucosaminidase remain without significant changes during the whole period. The fetal chondroitin sulfate C is tissue specific with different molecular weights depending on the tissue of origin. Some properties of fetal muscle and brain hyaluronidase are also described. The possible role of chondroitin sulfate C and hyaluronidase in the processes of differentiation and division is discussed in view of the present findings.  相似文献   

9.
The distribution of sulfated mucopolysaccharides in different tissues during growth and in cancer tissues is reported. It is shown that most of the tissues of 1 day-old rats and rabbits contain chondroitin sulfate A/C, chonroitin sulfate B and heparan sulfate in about the same proportions, whereas in adult animals chondroitin sulfate A/C decreases in concentration or disappears. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tissues. In rats, these changes occur in the first 25 days of extrauterine development. A great increase of chondoitin sulfate A/C was observed in human tumors of different origins when compared with the normal adjacent tissues. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tumors analysed. The possible role of chondroitin sulfate A/C in cell division is discussed in view of the present findings.  相似文献   

10.
Some structural features of heparitin sulfate excreted by patients with Hunter syndrome are described. It is shown, with the aid of heparitinases and heparinase from Flavobacterium heparinum, that the Hunter heparitin sulfate is a very complex structure composed of nine different disaccharide units containing regions akin to normal heparitin sulfate and regions akin the heparin. Two-thirds of the iduronic acid residues of Hunter heparitin sulfate are devoid of sulfate, contrasting with heparin in which most of the iduronic acid residues are sulfated. The isolation and characterization of the non-reducing ends of heparin and of the heparitin sulfates is also described. Based on these results the specificity of the heparinase and heparitinases as well as the biosynthesis of iduronic acid-containing heparin-like compounds is discussed.  相似文献   

11.
A mouse anterior pituitary tumor cell line (AtT-20) that secretes adrenocorticotropin and beta endorphin sorts the proteins it transports to the surface into two exocytotic pathways. AtT-20 cells also synthesize a secretory granule-specific sulfated molecule and secrete it on stimulation (Moore, H.-P., B. Gumbiner, and R. B. Kelly, 1983, J. Cell Biol., 97:810-817). We show here that this molecule is sensitive to proteolysis and that the residual sulfated material co-migrates with a chondroitin sulfate standard on thin-layer electrophoresis. Furthermore, this sulfated molecule is completely sensitive to chondroitinase ABC digestion. Thus the secretory granule-specific sulfated molecule is a proteoglycan with chondroitin sulfate side chains. We examined the role of proteoglycans in the sorting and secretion of adrenocorticotropin in AtT-20 cells by severely decreasing the amount of this vesicle-specific proteoglycan in two ways. First, a xyloside was used to inhibit proteoglycan biosynthesis; second, a variant of the AtT-20 cell line was isolated that synthesized little of the sulfated proteoglycan. In neither case was the sorting or secretion of adrenocorticotropin detectably altered, suggesting that the proteoglycan is not required for these processes.  相似文献   

12.
A comparative study on the distribution of sulfated mucopolysaccharides in several tissues of five mammalian species is reported. It is shown that each tissue has a characteristic composition differing from each other regarding the relative amount, type and molecular size of chondroitin sulfate A/C, chondroitin sulfate B and heparan sulfate. It is also shown that the same tissue from different mammals has the same types and proportions of sulfated mucopolysaccharides, but with different molecular weights. Exception to this rule was observed for the distribution of heparin which was present only in a few tissues of the five mammals studied. The possible involvement of the sulfated mucopolysaccharides in cell recognition and/or adhesiveness is discussed in view of this characteristic distribution.  相似文献   

13.
A comparative study on the distribution of sulfated mucopolysaccharides in several tissues of five mammalian species is reported. It is shown that each tissue has a characteristic composition differing from each other regarding the relative amount, type and molecular size of chondroitin sulfate A/C, chondroitin sulfate B and heparan sulfate. It is also shown that the same tissue from different mammals has the same types and proportions of sulfated mucopolysaccharides, but with different molecular weights. Exception to this rule was observed for the distribution of heparin which was present only in a few tissues of the five mammals studied.The possible involvement of the sulfated mucopolysaccharides in cell recognition and/or adhesiveness is discussed in view of this characteristic distribution.  相似文献   

14.
In our previous paper, we reported that various types of carrageenan, dextran sulfate and fucoidan, which are sulfated homopolysaccharides with high molecular weights, were human T cell mitogens and murine polyclonal B cell activators (PBAs) and that heparin, a sulfated heteropolysaccharide, was a very weak human mitogen and mouse PBA. Here we used cellulose sulfate (Mr 7-9 X 10(3], dextran sulfate with two different low molecular weights (Mr 5 X 10(3) and 8 X 10(3], two different condroitin sulfates (Mr 3.5 X 10(4], polyvinyl sulfate and polygalacturonic acid to investigate mitogenic activities of polysaccharides in detail. The following results were obtained. Low-molecular-weight sulfated homopolysaccharides, dextran sulfate and cellulose sulfate, were very weak or not human T cell mitogens. However, they were better murine PBAs. Sulfated heteropolysaccharides, chondroitin 4-sulfate and chondroitin 6-sulfate, hardly induced mitogenic changes in human T cells and mouse B cells, even though the molecular weight of these substances was more than 1 X 10(4). There were no other polymers examined so far which activated both human T cells and murine B cells. The relationship among molecular size, sulfate groups and lymphocyte activation is discussed in detail.  相似文献   

15.
We have previously cloned N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the C-6 hydroxyl group of the GalNAc 4-sulfate residue of chondroitin sulfate A and forms chondroitin sulfate E containing GlcA-GalNAc(4,6-SO(4)) repeating units. To investigate the function of chondroitin sulfate E, the development of specific inhibitors of GalNAc4S-6ST is important. Because GalNAc4S-6ST requires a sulfate group attached to the C-4 hydroxyl group of the GalNAc residue as the acceptor, the sulfated GalNAc residue is expected to interact with GalNAc4S-6ST and affect its activity. In this study, we synthesized phenyl alpha- or -beta-2-acetamido-2-deoxy-beta-D-galactopyranosides containing a sulfate group at the C-3, C-4, or C-6 hydroxyl groups and examined their inhibitory activity against recombinant GalNAc4S-6ST. We found that phenyl beta-GalNAc(4SO(4)) inhibits GalNAc4S-6ST competitively and also serves as an acceptor. The sulfated product derived from phenyl beta-GalNAc(4SO(4)) was identical to phenyl beta-GalNAc(4,6-SO(4)). These observations indicate that derivatives of beta-D-GalNAc(4SO(4)) are possible specific inhibitors of GalNAc4S-6ST.  相似文献   

16.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO(4))) in chondroitin sulfate and dermatan sulfate. We have previously purified the enzyme to apparent homogeneity from the squid cartilage. We report here cloning and characterization of human GalNAc4S-6ST. The strategy for identification of human GalNAc4S-6ST consisted of: 1) determination of the amino acid sequences of peptides derived from the purified squid GalNAc4S-6ST, 2) amplification of squid DNA by polymerase chain reaction, and 3) homology search using the amino acid sequence deduced from the squid DNA. The human GalNAc4S-6ST cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 561 amino acid residues. The recombinant protein expressed from the human GalNAc4S-6ST cDNA transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of the nonreducing terminal and internal GalNAc(4SO(4)) residues contained in chondroitin sulfate A and dermatan sulfate. When a trisaccharide and a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine residues were used as acceptors, only nonreducing terminal GalNAc(4SO(4)) residues were sulfated. The nucleotide sequence of the human GalNAc4S-6ST cDNA was nearly identical to the sequence of human B cell recombination activating gene-associated gene.  相似文献   

17.
Electrophoretic analyses of collagenous material have shown that the parietal yolk sac carcinoma (PYSC) ascitic tumour synthesizes polypeptide chains that migrate as type IV procollagen. Having molecular weights of 185,000 and 160,000, these polypeptides are sensitive to collagenase. When the PYSC cells are injected subcutaneously, they form a solid tumour, and type I collagen predominates. The electrophoretic analyses of sulfated glycosaminoglycans and enzymatic degradation have shown a predominance of heparan sulfate in the ascitic tumour, and of chondroitin sulfate B in the solid tumour. Cells cultured from ascitic tumours have maintained the same collagen and sulfated glycosaminoglycan patterns as the original cells, whereas in the solid tumour culture only chondroitin sulfate AC has been detected.  相似文献   

18.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

19.
Summary A 6-thioguanine-resistant (TgR) variant of the metastatic mammary tumor 13762 was found to be very immunogenic. This TgR variant was nontumorigenic and nonmetastatic, whereas the parent 13762 cell line is very tumorigenic and metastatic in normal syngeneic animals. The TgR variant was tumorigenic in irradiated animals. The mechanism of the hosts' immune rejection of this TgR variant was investigated. A 51Cr-release cytotoxic cell assay was used to assess lymphocyte cell-mediated cytotoxicity (CMC) of tumor-draining lymph nodes and spleens from animals injected with tumor cells. In a secondary CMC response of splenic T cells from animals injected with TgR cells, there was a much stronger response as compared to animals injected with 13762 cells. This strong cytotoxic T cell response was short-term and correlated to the host rejection of TgR cells. Previously, we selected revertant cell lines (TgRrev, TgRrevM) from the TgR variant line that were more metastatic and tumorigenic. The revertant cell lines induced a lower CMC response than the TgR line, but a higher response compared to the parent 13762 line. The poor CMC response from 13762 tumorbearing animals was investigated and appeared to be due to a suppressor T cell response.  相似文献   

20.
1. Glycosaminoglycans such as chondroitin sulfate A (or C), chondroitin sulfate B (dermatan sulfate), heparitin sulfate (heparan sulfate) and hyaluronic acid were identified as major glycosaminoglycan components in whole uteri as well as in uterine stroma of rats. Two types of sialoglycoproteins with different electrophoretic mobilities (fast- and slow-migrating) were detected in the glycosaminoglycan fraction from the luminal epithelia. 2. Treatment of ovariectomized rats with estradiol-17beta markedly increased the uterine contents of glycosaminoglycans. Chondroitin sulfate A (or C) was found to increase more than chondroitin sulfate B. Furthermore, it was found that the estrogen treatment specifically increases the fast-migrating sialoglycoprotein level in the luminal epithelia and results in the appearance of it in the uterine fluid. 3. Administration of progesterone to ovariectomized rats slightly increased the uterine glycosaminoglycan content without appreciable alteration of the uterine glycosaminoglycan pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号