首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.  相似文献   

2.
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) converts inactive 11-keto derivatives to active glucocorticoids within tissues and may play a role in the metabolic syndrome (MS). We used an antisense oligonucleotide (ASO) to knock down 11β-HSD1 in livers of C57BL/6J mice consuming a Western-type diet (WTD). 11β-HSD1 ASO-treated mice consumed less food, so we compared them to ad libitum-fed mice and to food-matched mice receiving control ASO. Knockdown of 11β-HSD1 directly protected mice from WTD-induced steatosis and dyslipidemia by reducing synthesis and secretion of triglyceride (TG) and increasing hepatic fatty acid oxidation. These changes in hepatic and plasma lipids were not associated with reductions in genes involved in de novo lipogenesis. However, protein levels of both sterol regulatory element-binding protein (SREBP) 1 and fatty acid synthase were significantly reduced in mice treated with 11β-HSD1 ASO. There was no change in hepatic secretion of apolipoprotein (apo)B, indicating assembly and secretion of smaller apoB-containing lipoproteins by the liver in the 11β-HSD1-treated mice. Our results indicate that inhibition of 11β-HSD1 by ASO treatment of WTD-fed mice resulted in improved plasma and hepatic lipid levels, reduced lipogenesis by posttranslational regulation, and secretion of similar numbers of apoB-containing lipoproteins containing less TG per particle.  相似文献   

3.
4.
Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.  相似文献   

5.
MicroRNA-122 (miR-122) is an abundant liver-specific miRNA, implicated in fatty acid and cholesterol metabolism as well as hepatitis C viral replication. Here, we report that a systemically administered 16-nt, unconjugated LNA (locked nucleic acid)-antimiR oligonucleotide complementary to the 5′ end of miR-122 leads to specific, dose-dependent silencing of miR-122 and shows no hepatotoxicity in mice. Antagonism of miR-122 is due to formation of stable heteroduplexes between the LNA-antimiR and miR-122 as detected by northern analysis. Fluorescence in situ hybridization demonstrated uptake of the LNA-antimiR in mouse liver cells, which was accompanied by markedly reduced hybridization signals for mature miR-122 in treated mice. Functional antagonism of miR-122 was inferred from a low cholesterol phenotype and de-repression within 24 h of 199 liver mRNAs showing significant enrichment for miR-122 seed matches in their 3′ UTRs. Expression profiling extended to 3 weeks after the last LNA-antimiR dose revealed that most of the changes in liver gene expression were normalized to saline control levels coinciding with normalized miR-122 and plasma cholesterol levels. Combined, these data suggest that miRNA antagonists comprised of LNA are valuable tools for identifying miRNA targets in vivo and for studying the biological role of miRNAs and miRNA-associated gene-regulatory networks in a physiological context.  相似文献   

6.
Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.  相似文献   

7.
To investigate the role of JNK1 in metabolism, male ob/ob and diet-induced obese mice were treated with a JNK1-specific antisense oligonucleotide (ASO) or control ASO at 25 mg/kg or saline twice/wk for 6 and 7 wk, respectively. JNK1 ASO reduced JNK1 mRNA and activity by 65-95% in liver and fat tissues in both models. Compared with controls, treatment with JNK1 ASO did not change food intake but lowered body weight, fat pad weight, and whole body fat content. The treatment increased metabolic rate. In addition, the treatment markedly reduced plasma cholesterol levels and improved liver steatosis and insulin sensitivity. These positive observations were accompanied by the following changes: 1) increased mRNA levels of AR-beta(3) and UCP1 by >60% in BAT, 2) reduced mRNA levels of ACC1, ACC2, FAS, SCD1, DGAT1, DGAT2, and RBP4 by 30-60% in WAT, and 3) reduced mRNA levels of ACC1, FAS, G-6-Pase, and PKCepsilon by 40-70% and increased levels of UCP2 and PPARalpha by more than twofold in liver. JNK1 ASO-treated mice demonstrated reduced levels of pIRS-1 Ser(302) and pIRS-1 Ser(307) and increased levels of pAkt Ser(473) in liver and fat in response to insulin. JNK1 ASO-transfected mouse hepatocytes showed decreased rates of de novo sterol and fatty acid synthesis and an increased rate of fatty acid oxidation. These results indicate that inhibition of JNK1 expression in major peripheral tissues can improve adiposity via increasing fuel combustion and decreasing lipogenesis and could therefore provide clinical benefit for the treatment of obesity and related metabolic abnormalities.  相似文献   

8.
We have previously reported that essential fatty acid deficiency (EFAD) during suckling in mice resulted in an adult lean phenotype and a resistance to diet-induced obesity. We now hypothesized that postnatal EFAD would cause long-term effects on lipid metabolism. C57BL/6 mice were fed an EFAD or a control diet from the 16th day of gestation and throughout lactation. The pups were weaned to standard diet (STD) and at 15 weeks of age given either high fat diet (HFD) or STD. Lipoprotein profiles, hepatic lipids, fatty acids and mRNA expression were analyzed in 3-week-old and 25-week-old offspring. At weaning, the EFAD pups had higher cholesterol levels in both plasma and liver and 6-fold higher concentrations of hepatic cholesterol esters than control pups. Adult EFAD offspring had higher levels of hepatic cholesterol and linoleic acid, but lower levels of dihomo-γ-linolenic acid and Pparg mRNA expression in the liver. In addition, HFD fed EFAD offspring had lower plasma total cholesterol, lower hepatic triglycerides and lower liver weight compared to controls fed HFD. In conclusion, early postnatal EFAD resulted in short-term alterations with increased hepatic cholesterol accumulation and long-term protection against diet-induced liver steatosis and hypercholesterolemia.  相似文献   

9.
High levels of plasma apolipoprotein B-100 (apoB-100), the principal apolipoprotein of LDL, are associated with cardiovascular disease. We hypothesized that suppression of apoB-100 mRNA by an antisense oligonucleotide (ASO) would reduce LDL cholesterol (LDL-C). Because most of the plasma apoB is made in the liver, and antisense drugs distribute to that organ, we tested the effects of a mouse-specific apoB-100 ASO in several mouse models of hyperlipidemia, including C57BL/6 mice fed a high-fat diet, Apoe-deficient mice, and Ldlr-deficient mice. The lead apoB-100 antisense compound, ISIS 147764, reduced apoB-100 mRNA levels in the liver and serum apoB-100 levels in a dose- and time-dependent manner. Consistent with those findings, total cholesterol and LDL-C decreased by 25-55% and 40-88%, respectively. Unlike small-molecule inhibitors of microsomal triglyceride transfer protein, ISIS 147764 did not produce hepatic or intestinal steatosis and did not affect dietary fat absorption or elevate plasma transaminase levels. These findings, as well as those derived from interim phase I data with a human apoB-100 antisense drug, suggest that antisense inhibition of this target may be a safe and effective approach for the treatment of humans with hyperlipidemia.  相似文献   

10.
Acyl-CoA:diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the formation of triglyceride (TG) from acyl-CoA and diacylglycerol. Two DGATs have been identified which belong to two distinct gene families and both are ubiquitously expressed. DGAT2 knockout mice are lipopenic and die shortly after birth. In the current study, wild type mice were treated with increasing doses (25-60 mg/kg twice weekly) of a DGAT2 gene-specific antisense oligonucleotide (ASO). Treatment resulted in a dose dependent decrease in hepatic DGAT2 gene expression (up to 80%) which was associated with a 40% decrease in hepatic DGAT2 activity and a 45% decrease in hepatic TG. Decreased levels of DGAT2 resulted in a significant dose dependent decrease in VLDL TG secretion (up to 52%) and reduced plasma TG, total cholesterol, and ApoB. Similar results were obtained when DGAT1 KO mice were treated with the DGAT2 ASO. Treatment of ob/ob mice with the DGAT2 ASO resulted in significant decreases in weight gain (10%), adipose weight (25%) and hepatic TG content (80%). Our findings indicate that the majority of TG destined for secretion by liver is synthesized by DGAT2 and suggests that DGAT2 may be a therapeutic target for treatment of hypertriglyceridemia, hepatic steatosis and obesity.  相似文献   

11.
High plasma cholesterol levels are found in several metabolic disorders and their reductions are advocated to reduce the risk of atherosclerosis. A way to lower plasma lipids is to curtail lipoprotein production; however, this is associated with steatosis. We previously showed that microRNA (miR)-30c lowers diet-induced hypercholesterolemia and atherosclerosis in C57BL/6J and Apoe−/− mice. Here, we tested the effect of miR-30c on plasma lipids, transaminases, and hepatic lipids in different mouse models. Hepatic delivery of miR-30c to chow-fed leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) hypercholesterolemic and hyperglycemic mice reduced cholesterol in total plasma and VLDL/LDL by ∼28% and ∼25%, respectively, without affecting triglyceride and glucose levels. And these mice had lower plasma transaminases and creatine kinase activities than controls. Moreover, miR-30c significantly lowered plasma cholesterol and atherosclerosis in Western diet-fed Ldlr−/− mice with no effect on plasma triglyceride, glucose, and transaminases. In these studies, hepatic lipids were similar in control and miR-30c-injected mice. Mechanistic studies showed that miR-30c reduced hepatic microsomal triglyceride transfer protein activity and lipid synthesis. Thus miR-30c reduced plasma cholesterol in several diet-induced and diabetic hypercholesterolemic mice. We speculate that miR-30c may be beneficial in lowering plasma cholesterol in different metabolic disorders independent of the origin of hypercholesterolemia.  相似文献   

12.
An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.  相似文献   

13.
Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.  相似文献   

14.
The relationships among micro RNA-122 (miR-122) expression in the liver, hepatitis C virus (HCV) replication and hepatic damage were analyzed in three chimpanzees observed for 180 days after inoculation with HCV genotype 1a. Levels of miR-122 in the liver and serum were measured by real-time RT PCR in serial liver biopsies and serum samples. Hepatic miR-122 levels were normalized separately for each of three chimpanzees with small RNAs and microRNAs that are endogenous to the liver and are stably expressed. Two- to 4-fold rise in hepatic miR-122 levels was observed at the onset of HCV infection (the first 4 weeks) when HCV titers in the liver and serum increased rapidly in all three chimpanzees in concordance with in vitro data indicating the miR-122 significance for HCV replication. Between 10 to 14 weeks after inoculation, when hepatic and serum HCV RNA titers exceeded 3 logs and alanine aminotransferase (ALT) activity was elevated, hepatic miR-122 levels were in decline. Cumulative data derived from all three chimpanzees from 180 days of observation documented an inverse (negative) correlation between hepatic miR-122 and HCV RNA in the liver and serum and positive correlation between level of serum miR-122 and HCV replication. Subsequent rise of miR-122 level during HCV clearance and ALT normalization suggested a tri-phasic occurrence of the relationship among hepatic miR-122 expression, HCV replication and hepatic destruction, which was the most apparent in one chimpanzee but less evident in two other animals. In vivo kinetics of hepatic and serum miR-122, HCV replication and hepatic destruction reflects complexities of the virus-host interaction during the acute phase of HCV infection.  相似文献   

15.
Lipid droplets in the liver are coated with the perilipin family of proteins, notably adipocyte differentiation-related protein (ADRP) and tail-interacting protein of 47 kDa (TIP47). ADRP is increased in hepatic steatosis and is associated with hyperlipidemia, insulin resistance, and glucose intolerance. We have shown that reducing ADRP in the liver via antisense oligonucleotide (ASO) treatment attenuates steatosis and improves insulin sensitivity and glucose tolerance. We hypothesized that TIP47 has similar effects on hepatic lipid and glucose metabolism. We found that TIP47 mRNA and protein levels were increased in response to a high-fat diet (HFD) in C57BL/6J mice. TIP47 ASO treatment decreased liver TIP47 mRNA and protein levels without altering ADRP levels. Low-dose TIP47 ASO (15 mg/kg) and high-dose TIP47 ASO (50 mg/kg) decreased triglyceride content in the liver by 35% and 52%, respectively. Liver histology showed a drastic reduction in hepatic steatosis following TIP47 ASO treatment. The high dose of TIP47 ASO significantly blunted hepatic triglyceride secretion, improved glucose tolerance, and increased insulin sensitivity in liver, adipose tissue, and muscle. These findings show that TIP47 affects hepatic lipid and glucose metabolism and may be a target for the treatment of nonalcoholic fatty liver and related metabolic disorders.  相似文献   

16.
Deletion of acyl-CoA:cholesterol O-acyltransferase 2 (ACAT2) in mice results in resistance to diet-induced hypercholesterolemia and protection against atherosclerosis. Recently, our group has shown that liver-specific inhibition of ACAT2 via antisense oligonucleotide (ASO)-mediated targeting likewise limits atherosclerosis. However, whether this atheroprotective effect was mediated by: 1) prevention of packaging of cholesterol into apoB-containing lipoproteins, 2) augmentation of nascent HDL cholesterol secretion, or 3) increased hepatobiliary sterol secretion was not examined. Therefore, the purpose of these studies was to determine whether hepatic ACAT2 is rate-limiting in all three of these important routes of cholesterol homeostasis. Liver-specific depletion of ACAT2 resulted in reduced packaging of cholesterol into apoB-containing lipoproteins (very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein), whereas high density lipoprotein cholesterol levels remained unchanged. In the liver of ACAT2 ASO-treated mice, cholesterol ester accumulation was dramatically reduced, yet there was no reciprocal accumulation of unesterified cholesterol. Paradoxically, ASO-mediated depletion of hepatic ACAT2 promoted fecal neutral sterol excretion without altering biliary sterol secretion. Interestingly, during isolated liver perfusion, ACAT2 ASO-treated livers had augmented secretion rates of unesterified cholesterol and phospholipid. Furthermore, we demonstrate that liver-derived cholesterol from ACAT2 ASO-treated mice is preferentially delivered to the proximal small intestine as a precursor to fecal excretion. Collectively, these studies provide the first insight into the hepatic itinerary of cholesterol when cholesterol esterification is inhibited only in the liver, and provide evidence for a novel non-biliary route of fecal sterol loss.  相似文献   

17.
18.
19.
De novo lipogenesis is an energy-expensive process whose role in adult mammals is poorly understood. We generated mice with liver-specific inactivation of fatty-acid synthase (FAS), a key lipogenic enzyme. On a zero-fat diet, FASKOL (FAS knockout in liver) mice developed hypoglycemia and fatty liver, which were reversed with dietary fat. These phenotypes were also observed after prolonged fasting, similarly to fasted PPARalpha-deficiency mice. Hypoglycemia, fatty liver, and defects in expression of PPARalpha target genes in FASKOL mice were corrected with a PPARalpha agonist. On either zero-fat or chow diet, FASKOL mice had low serum and hepatic cholesterol levels with elevated SREBP-2, decreased HMG-CoA reductase expression, and decreased cholesterol biosynthesis; these were also corrected with a PPARalpha agonist. These results suggest that products of the FAS reaction regulate glucose, lipid, and cholesterol metabolism by serving as endogenous activators of distinct physiological pools of PPARalpha in adult liver.  相似文献   

20.
To investigate the possible role of eukaryotic initiation factor 4E-binding protein-2 (4E-BP2) in metabolism and energy homeostasis, high-fat diet-induced obese mice were treated with a 4E-BP2-specific antisense oligonucleotide (ASO) or a control 4E-BP2 ASO at a dose of 25 mg/kg body wt or with saline twice a week for 6 wk. 4E-BP2 ASO treatment reduced 4E-BP2 levels by >75% in liver and white (WAT) and brown adipose (BAT) tissues. Treatment did not change food intake but lowered body weight by approximately 7% and body fat content by approximately 18%. Treatment decreased liver triglyceride (TG) content by >50%, normalized plasma glucose and insulin levels, and reduced glucose excursion during glucose tolerance test. 4E-BP2 ASO-treated mice showed >8.5% increase in metabolic rate, >40% increase in UCP1 levels in BAT, >45% increase in beta(3)-adrenoceptor mRNA, and 40-55% decrease in mitochondrial dicarboxylate carrier, fatty acid synthase, and diacylglycerol acyltransferase 2 mRNA levels in WAT. 4E-BP2 ASO-transfected mouse hepatocytes showed an increased fatty acid oxidation rate and a decreased TG synthesis rate. In addition, 4E-BP2 ASO-treated mice demonstrated approximately 60 and 29% decreases in hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase mRNA, respectively, implying decreased hepatic glucose output. Furthermore, increased phosphorylation of Akt(Ser473) in both liver and fat of 4E-BP2 ASO-treated mice and increased GLUT4 levels in plasma membrane in WAT of the ASO-treated mice were observed, indicating enhanced insulin signaling and increased glucose uptake as a consequence of reduced 4E-BP2 expression. These data demonstrate for the first time that peripheral 4E-BP2 plays an important role in metabolism and energy homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号